| 注册
首页|期刊导航|现代信息科技|基于动态聚类的个性化联邦学习与模块化组合策略

基于动态聚类的个性化联邦学习与模块化组合策略

周洪炜 马源 马旭

现代信息科技2024,Vol.8Issue(13):61-64,69,5.
现代信息科技2024,Vol.8Issue(13):61-64,69,5.DOI:10.19850/j.cnki.2096-4706.2024.13.013

基于动态聚类的个性化联邦学习与模块化组合策略

Personalized Federated Learning Based on Dynamic Clustering and Modular Combinatorial Strategy

周洪炜 1马源 1马旭1

作者信息

  • 1. 曲阜师范大学,山东 曲阜 273165
  • 折叠

摘要

Abstract

This paper proposes a personalized federated learning method based on dynamic clustering to address the issue of heterogeneous data in Federated Learning.This method combines the optimization target vector with the agglomerative clustering algorithm,dynamically divides clients with significant data differences into different clusters while conserving computing resources.Furthermore,in consideration of the sustainability of training models,the paper further proposes a modular combinatorial strategy,where new clients only need to combine previously trained models to obtain an initial model suitable for local tasks.The client only needs to perform a small amount of training on this initial model to apply it to local tasks.On the Cafir-10 and Minst datasets,the model's accuracy is superior to that of locally retrained models.

关键词

联邦学习/个性化/深度神经网络/可组合/动态聚类

Key words

Federated Learning/personalization/Deep Neural Network/combinatorial/dynamic clustering

分类

信息技术与安全科学

引用本文复制引用

周洪炜,马源,马旭..基于动态聚类的个性化联邦学习与模块化组合策略[J].现代信息科技,2024,8(13):61-64,69,5.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文