| 注册
首页|期刊导航|现代信息科技|基于TensorFlow和CNN模型的验证码识别研究

基于TensorFlow和CNN模型的验证码识别研究

马凯 贺晓松

现代信息科技2024,Vol.8Issue(13):65-69,5.
现代信息科技2024,Vol.8Issue(13):65-69,5.DOI:10.19850/j.cnki.2096-4706.2024.13.014

基于TensorFlow和CNN模型的验证码识别研究

Research on Captcha Recognition Based on TensorFlow and CNN Model

马凯 1贺晓松1

作者信息

  • 1. 重庆工程学院,重庆 400056
  • 折叠

摘要

Abstract

Aiming at the problems of low overall accuracy and insufficient generalization ability of segmentation and recognition methods applied to multi character captcha in traditional Machine Learning,an efficient and universal recognition method is proposed.It designs an end-to-end character captcha recognition process based on CNN model,and uses TensorFlow framework to implement data training and effectiveness verification of the process.This method can efficiently recognize character captcha with an average accuracy of over 95%.By inputting the entire image and directly outputting the overall recognition result,it has stronger universality.It uses CNN models to recognize multi character captcha has higher accuracy and versatility compared to traditional Machine Learning methods.

关键词

验证码识别/TensorFlow/CNN/端到端

Key words

captcha recognition/TensorFlow/CNN/end-to-end

分类

信息技术与安全科学

引用本文复制引用

马凯,贺晓松..基于TensorFlow和CNN模型的验证码识别研究[J].现代信息科技,2024,8(13):65-69,5.

基金项目

重庆工程学院校内科研基金(2022xzcr02) (2022xzcr02)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文