| 注册
首页|期刊导航|现代应用物理|基于MOOSE平台的中子扩散方程数值解法

基于MOOSE平台的中子扩散方程数值解法

姜夺玉 许鹏 胡田亮 江新标 王立鹏 曹璐 李达 陈立新

现代应用物理2024,Vol.15Issue(3):20-29,44,11.
现代应用物理2024,Vol.15Issue(3):20-29,44,11.DOI:10.12061/j.issn.2095-6223.2024.030202

基于MOOSE平台的中子扩散方程数值解法

Numerical Solution of Neutron Diffusion Equation Based on MOOSE Framework

姜夺玉 1许鹏 2胡田亮 3江新标 3王立鹏 3曹璐 3李达 3陈立新3

作者信息

  • 1. 火箭军工程大学,西安 710025||西北核技术研究所,西安 710024
  • 2. 火箭军工程大学,西安 710025
  • 3. 西北核技术研究所,西安 710024
  • 折叠

摘要

Abstract

In this paper,the variational formulation of the multigroup neutron diffusion equation is derived based on Galerkin finite element method.Considering the control rod cusping phenomenon,a refined model is formulated.To counteract the protracted computational durations engendered by static temporal increments,an adaptive time-stepping schema is innovated.The steady state and spatial dynamics neutron diffusion code,Nurus_diffusion is crafted in the C++language,ensconced within the Multiphysics object-oriented simulation environment(MOOSE)framework.The precision of the code in calculating eigenvalue keff is substantiated through the utilisation of the 2D BSS3 benchmark alongside the 2D/3D IAEA benchmark.The transient response capabilities of the code is corroborated via the 3D LMW benchmark and the 2D TWIGL benchmark.In addition,the impact of grid dimensionality on computational precision is analyzed in the 2D BSS3 benchmark.The impact of constant versus adaptive time-stepping on computational efficiency is analyzed in the 2D TWIGL benchmark.The results show that the deviation of eigenvaluekeffcalculated by the Nurus_diffusion code are a mere 2.8× 10-5 for the BSS3 benchmark and 4 × 10-4 for the IAEA benchmark.The maximal deviation of transient relative power for the LMW and TWIGL benchmarks is approximately 1.7% ,demonstrating good agreement with the reference.The deviation of results is large when calculating with sparse grids.However,computational precision escalates significantly with the augmentation of grid density.Comparative analysis indicates that an adaptive time-stepping approach can substantially ameliorate computational efficiency without sacrificing accuracy,providing that an optimal weighting factor for the time-stepping selection is chosen.

关键词

中子扩散方程/Galerkin有限元法/MOOSE/Nurus_diffusion

Key words

Neutron diffusion equation/Galerkin finite element method/MOOSE/Nurus diffusion

分类

能源科技

引用本文复制引用

姜夺玉,许鹏,胡田亮,江新标,王立鹏,曹璐,李达,陈立新..基于MOOSE平台的中子扩散方程数值解法[J].现代应用物理,2024,15(3):20-29,44,11.

基金项目

国家自然科学基金资助项目(12205237,12275219) (12205237,12275219)

现代应用物理

OACSTPCD

2095-6223

访问量0
|
下载量0
段落导航相关论文