|国家科技期刊平台
首页|期刊导航|液晶与显示|基于Retinex-Net网络模型的渐晕图像校正

基于Retinex-Net网络模型的渐晕图像校正OA北大核心CSTPCD

Correction of vignetting images based on Retinex-Net network model

中文摘要英文摘要

相机成像过程中会因为视角变化而产生渐晕效应,使图像出现中间亮、四周暗的现象.渐晕的存在使图像丢失部分边缘纹理信息,极大地影响机器视觉处理的性能.针对此问题,本文从校正图像清晰度和提高去噪性能两方面入手,对Retinex-Net网络模型进行改进.首先,在原模型基础上添加空洞卷积,以保持校正图像的高分辨率并扩大感受野.其次,将图像去噪改进为密集残差网络的方式,目的是密集提取渐晕图像的每一层特征,更多地保留图像的细节特性并抑制噪声.最后,构建了渐晕图像的数据集,并将本文提出的算法在测试集上进行校正性能验证.本文算法与改进前的原网络模型相比较,SSIM值提升了0.293,PSNR值提升了0.727,RMSE值降低了0.095.相较于最小化图像熵、自适应补偿Retinex、基于径向梯度对称性等校正算法,本文算法具有更好的校正性能,并且在视觉上更适合观察和理解.

During the camera imaging process,a gradual halo effect may occur due to changes in the viewing angle,resulting in a phenomenon of bright in the middle and dark around the image.The presence of gradual halo results in the loss of some edge texture information in the image,greatly affecting the performance of machine vision processing.To address this issue,this article aims to improve the Retinex-Net network model by correcting image clarity and improving denoising performance.Firstly,in order to maintain the high resolution of the corrected image while improving the receptive field,this paper adds dilated convolution on the basis of the original network model.Secondly,the algorithm improves the denoising method to a dense residual network denoising method,with the aim of densely extracting each layer's features of the vignetting image,preserving more of the image's detailed characteristics and suppressing noise.Finally,this article constructs a dataset of vignetting images and verifies the correction performance of the proposed vignetting correction algorithm on the test set.Compared with the original network model before improvement,the algorithm in this paper improves by 0.293 in SSIM value,0.727 in PSNR value,and 0.095 in RMSE value.Compared with correction algorithms such as minimizing image entropy,adaptive compensation Retinex,and radial gradient symmetry,the algorithm in this paper has better correction performance and is more suitable for observation and understanding visually.

黄丹丹;王菲;刘智;高晗;王惠绩

长春理工大学 电子信息工程学院,吉林 长春 130022||长春理工大学 空间光电技术国家地方联合工程研究中心,吉林 长春 130022

计算机与自动化

渐晕图像校正Retinex理论空洞卷积残差网络

gradual halo image correctionRetinex theorydilated convolutionresidual network

《液晶与显示》 2024 (007)

929-938 / 10

国家自然科学基金(No.62127813);吉林省科技厅重点研发项目(No.20230201071GX)Supported by National Natural Science Foundation of China(No.62127813);Key R&D Project of Jilin Provincial Department of Science and Technology(No.20230201071GX)

10.37188/CJLCD.2023-0194

评论