一种融合KPCA、FastICA及SVD的腹壁源胎儿心电信号提取算法研究OACSTPCD
Algorithm for extracting fetal electrocardiogram signals from abdominal wall sources by integrating kernel principal component analysis,fast independent component analysis and singular value decomposition
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法.方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分.随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道.在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计.最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号.在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和 PhysioNet 2013挑战赛数据库中对提出的算法进行验证.结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能.在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%.结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持.
Objective To propose an algorithm to extract fetal ECG signals from mixed signals of maternal abdominal wall with high signal-to-noise ratio and clear waveforms by combining kernel principal component analysis(KPCA),fast independent component analysis(FastICA)and singular value decomposition(SVD).Methods Firstly,KPCA was used to downscale the maternal ECG signals,and then the improved negative entropy-based FastICA was applied to processing the downscaled data to obtain the independent components.Subsequently,sample entropy was introduced for signal channel selection,and the signal channel containing the most maternal information was selected.SVD was performed on the selected maternal channel to get an approximate estimate of the maternal ECG signals,which was then subtracted from the abdominal wall source signals to obtain a preliminary estimate of the fetal ECGs.Finally,the pure fetal ECG signals were successfully separated using a modified negentropy-based FastICA.The proposed algorithm was validated in the Abdominal and Direct Fetal Electrocardiogram Database(ADFECGDB)and the PhysioNet 2013 Challenge database.Results The proposed algorithm gained advantages in both subjective visualization and objective evaluation metrics,which had the sensitivity,positive predictive value and F1 value of fetal QRS compound wave respectively being 99.74%,98.85%and 99.30%for the ADFECGDB database,and 99.10%,97.87%and 98.48%for the PhysioNet 2013 Challenge database.Conclusion The fetal ECG signal extraction algorithm incorporating KPCA,FastICA and SVD effectively handles the additional noise while extracting fetal ECG signals,which provides strong support for the early diagnosis of fetal diseases.[Chinese Medical Equipment Journal,2024,45(7):1-7]
陈琳;杨玉瑶;吴水才
北京工业大学化学与生命科学学院,北京 100124
基础医学
胎儿心电信号核主成分分析快速独立成分分析奇异值分解腹壁混合信号
fetal electrocardiogram signalkernel principal component analysisfast independent component analysissingular value decompositionmixed signal of abdominal wall
《医疗卫生装备》 2024 (007)
1-7 / 7
评论