| 注册
首页|期刊导航|液压与气动|麻雀搜索算法优化的外啮合齿轮泵泄漏量预测

麻雀搜索算法优化的外啮合齿轮泵泄漏量预测

张立强 张建强 丁杰 李全军 李琛玺

液压与气动2024,Vol.48Issue(7):93-100,8.
液压与气动2024,Vol.48Issue(7):93-100,8.DOI:10.11832/j.issn.1000-4858.2024.07.011

麻雀搜索算法优化的外啮合齿轮泵泄漏量预测

Prediction of Leakage in External Gear Pump Optimized by Sparrow Search Algorithm

张立强 1张建强 1丁杰 1李全军 1李琛玺1

作者信息

  • 1. 兰州理工大学能源与动力工程学院,甘肃兰州 730050
  • 折叠

摘要

Abstract

Predicting the change trend of gear pump leakage can help quantitatively analyze its performance degradation process.The variational modal decomposition method is used to perform variational mode decomposition on the original leakage data of the gear pump,and the intrinsic mode function IMF is obtained.A model that combines sparrow search algorithm and long-short term memory is proposed.The VMD-SSA-LSTM model is established to predict the changes in gear pump leakage,and each component is predicted separately.Finally,the prediction results are superimposed to obtain the complete prediction results.By comparing the prediction results in different time periods,it can be seen that the VMD-SSA-LSTM model can reduce the average relative error of the prediction results by up to 25.2%compared with the single LSTM model,which can effectively predict the leakage quantity.The research conclusions can provide theoretical support for quantitative prediction of gear pump performance degradation.

关键词

外啮合齿轮泵/泄漏量预测/变分模态分解/麻雀搜索算法/长短期记忆网络/性能退化

Key words

external gear pump/leakage prediction/variational mode decomposition/sparrow search algorithm/long short-term memory network/performance degradation

分类

机械制造

引用本文复制引用

张立强,张建强,丁杰,李全军,李琛玺..麻雀搜索算法优化的外啮合齿轮泵泄漏量预测[J].液压与气动,2024,48(7):93-100,8.

基金项目

国家自然科学基金(51565027) (51565027)

液压与气动

OA北大核心CSTPCD

1000-4858

访问量0
|
下载量0
段落导航相关论文