| 注册
首页|期刊导航|自动化学报|基于流形正则化框架和MMD的域自适应BLS模型

基于流形正则化框架和MMD的域自适应BLS模型

赵慧敏 郑建杰 郭晨 邓武

自动化学报2024,Vol.50Issue(7):1458-1471,14.
自动化学报2024,Vol.50Issue(7):1458-1471,14.DOI:10.16383/j.aas.c210009

基于流形正则化框架和MMD的域自适应BLS模型

Domain Adaptive BLS Model Based on Manifold Regularization Framework and MMD

赵慧敏 1郑建杰 2郭晨 3邓武1

作者信息

  • 1. 中国民航大学电子信息与自动化学院 天津 300300
  • 2. 首都师范大学心理学院 北京 100048
  • 3. 大连海事大学船舶电气工程学院 大连 116023
  • 折叠

摘要

Abstract

As an efficient incremental learning system based on random vector function-link network(RVFLN),broad learning system(BLS)has the characteristics of fast adaptive model structure selection and high precision.However,due to the lack of label data in target classification,the traditional BLS is difficult to improve the classi-fication effect of target domain by using relevant domain knowledge.Therefore,a domain adaptive BLS(DABLS)model based on manifold regularization framework and maximum mean discrepancy(MMD)is developed to achieve cross-domain image classification of target domain under unlabeled condition.Firstly,the feature nodes and en-hancement nodes of BLS are constructed to effectively extract features from the data of source domain and target domain.The manifold regularization framework is used to construct Laplacian matrix in order to explore the mani-fold characteristics of the target domain data and mine the potential information of the target domain data.Then the transfer learning method is used to construct the MMD penalty term between the source domain data and the target domain data to match the projection mean between the source domain and the target domain.The feature nodes,enhancement nodes,MMD penalty term and Laplacian matrix are combined to construct the objective func-tion.Ridge regression analysis is used to solve the objective function to obtain the output coefficients,so as to im-prove the cross-domain classification performance.Finally,a large number of validation and comparative experi-ments are carried out on different image data sets,and the experiment results show that the DABLS can better achieve cross-domain classification on different image data sets,and has strong generalization ability and better sta-bility.

关键词

宽度学习系统/流形正则化框架/最大均值差异/域自适应/图像分类

Key words

Broad learning system(BLS)/manifold regularization framework/maximum mean discrepancy(MMD)/domain adaptation/image classification

引用本文复制引用

赵慧敏,郑建杰,郭晨,邓武..基于流形正则化框架和MMD的域自适应BLS模型[J].自动化学报,2024,50(7):1458-1471,14.

基金项目

国家自然科学基金(61771087,51879027),中国民航大学科研启动基金(2020KYQD123)资助Supported by National Natural Science Foundation of China(61771087,51879027)and Research Foundation for Civil Avi-ation University of China(2020KYQD123) (61771087,51879027)

自动化学报

OA北大核心CSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文