|国家科技期刊平台
首页|期刊导航|中国电机工程学报|基于贝叶斯深度学习的新能源多场站临界短路比区间预测方法

基于贝叶斯深度学习的新能源多场站临界短路比区间预测方法OA北大核心CSTPCD

Multiple Renewable Energy Station Critical Short Circuit Ratio Interval Prediction Method Based on Bayesian Deep Learning

中文摘要英文摘要

大规模新能源并网后电力系统的电压安全稳定问题突出,亟需一种兼具准确性和实用性的方法来评估系统的电压支撑强度.为此,该文提出一种基于贝叶斯深度学习的新能源多场站短路比(multiple renewable energy station short circuit ratio,MRSCR)智能增强方法.首先,聚焦于MRSCR缺乏准确的临界短路比(critical short circuit ratio,CSCR)问题,提出 CSCR样本集的构建流程,并据此开发样本的批量仿真程序.然后,利用多门控混合专家网络对各新能源接入点的 CSCR进行同步预测,并结合贝叶斯深度学习提升预测精度,量化预测不确定性.最后,考虑到点估计的弊端,提出一种基于动态阈值的不等式方法来给出兼具可靠性和清晰性的区间估计,为不同的决策需求提供多种属性的预测值.在CEPRI-FS-102节点系统上的测试结果表明,所提方法可有效提高电压支撑强度的评估精度和速度,其预测信息可为决策过程提供重要的指导意义.

After large-scale renewable energy is connected to the grid,the problem of voltage security and stability is prominent,so it is urgent to find a method with accuracy and practicability to evaluate the voltage support strength of the system.Therefore,an intelligent enhancement method of multiple renewable energy station short circuit ratio(MRSCR)based on Bayesian deep learning is proposed in this paper.First,focusing on the lack of accurate critical short circuit ratio(CSCR)of MRSCR,the construction process of CSCR sample set is proposed,and the batch simulation program of samples is developed accordingly.Then,the multi-gate mixture-of-experts is used to synchronously predict the CSCR of each new energy access point,and Bayesian deep learning is combined to improve the prediction accuracy and quantify the prediction uncertainty.Finally,considering the disadvantages of point estimation,an inequality method based on dynamic threshold values is proposed to provide reliable and clear interval estimation,which can provide multiple attributes of predicted values for different decision requirements.The test results on the CEPRI-FS-102 bus system show that the proposed method can effectively improve the evaluation accuracy and speed of voltage support strength,and the prediction information can provide important guidance for the decision-making process.

李保罗;徐式蕴;李宗翰;孙华东;于琳

电网智能化调度与控制教育部重点实验室(山东大学),山东省 济南市 250061电网安全与节能国家重点实验室(中国电力科学研究院有限公司),北京市 海淀区 100192

动力与电气工程

电压支撑强度贝叶斯深度学习多任务学习短路比

system strengthbayesian deep learningmulti-tasking learningshort circuit ratio

《中国电机工程学报》 2024 (014)

5451-5462,中插2 / 13

国家重点研发计划项目(2021YFB2400800).National Key R&D Program of China(2021YFB2400800).

10.13334/j.0258-8013.pcsee.230590

评论