基于多阶段递推数据分析的低压台区窃电检测方法OA北大核心CSTPCD
Detection Method of Electric Theft in Low Voltage Station Area Based on Multi-stage Recursive Data Analysis
窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行.针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法.该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3 阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法.通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性.
Electricity theft not only disrupts the normal order of power consumption but also affects the quality of the power supply and the safe operation of the power grid.To solve the problem of diversification between normal power consumption and theft behavior of customers faced in electricity theft detection work,this paper proposes a method for detecting electricity theft in low-voltage stations based on multi-stage recursive data analysis.The first stage of the method identifies the suspected electricity theft area.A three-step analysis method based on the comprehensive fluctuation rate of line loss in the station area,the total-sub meters'current variance rate and the degree of time-overlap of sudden change points in the line loss and current curves are proposed for situations where the line loss is not significantly surging on that day,providing good conditions for the detection of suspected customers of electricity theft.The second stage proposes a time series similarity measure based on the most optimal set of special features.Based on the Euclidean distance measure of the numerical characteristics between curves and the dynamic time warping(DTW)algorithm measure of the morphological characteristics between curves,preliminary screening of suspected customers for electricity theft is achieved.The third stage proposes a support vector machine model for second-depth detection with optimized kernel functions and penalty parameters(OKPSVM),where the penalty parameters are optimized using an improved particle swarm algorithm(IPSO).The overall optimized support vector machine model(IPSO-OKPSVM)can improve the accuracy and applicability of deep power theft detection through arithmetic simulation and practical engineering applications.
孔祥玉;马玉莹;赵鑫;梁博浩
智能电网教育部重点实验室(天津大学),天津市 南开区 300072国网冀北电力有限公司承德供电公司,河北省 承德市 067000
动力与电气工程
低压台区窃电检测多阶段递推特征相似性度量支持向量机
low-voltage stationelectricity theft detectionmulti-stage recursionfeature similarity metricsupport vector machine
《中国电机工程学报》 2024 (015)
5921-5933,中插7 / 14
国家自然科学基金项目(51877145). Project Supported by National Natural Science Foundation of China(51877145).
评论