|国家科技期刊平台
首页|期刊导航|中国电机工程学报|考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制

考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制OA北大核心CSTPCD

Data-driven Voltage/Var Optimization Control of Active Distribution Network Considering the Reliability of Photovoltaic Power Supply

中文摘要英文摘要

充分挖掘分布式光伏电源的无功支撑能力,有助于解决光伏高比例接入带来的配电网电压波动、电压越限以及新能源消纳等问题,但光伏电源无功输出会造成其功率器件结温越限或剧烈波动,严重威胁到光伏电源的可靠运行.为此,提出考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制策略.首先,提出一种基于数据驱动的光伏电源可靠性评估方法,该方法采用 XGBoost 机器学习模型计算IGBT结温,提高了IGBT结温计算效率,避免了评估精度对IGBT参数的依赖;进而建立考虑光伏电源可靠性的配电网无功电压优化模型,将IGBT结温均值和结温波动引入模型优化目标;然后,将该模型进行马尔可夫决策过程转化,并基于深度确定性策略梯度强化学习算法完成智能体训练;最后,通过IEEE 33节点系统验证所提策略在无功电压快速优化和光伏电源可靠性提升方面的优势.

Fully exploiting the reactive power support capability of distributed photovoltaic power supply is instrumental in addressing issues related to voltage fluctuation,voltage over-limit and new energy consumption in the distribution network caused by a high proportion of photovoltaic access.However,the reactive power output of the photovoltaic power supply will cause the junction temperature of its power device to exceed the limit or fluctuate sharply,which seriously threatens the reliable operation of the photovoltaic power supply.Therefore,this paper proposes a data-driven voltage/var optimization control strategy for the new energy distribution network considering the reliability of the photovoltaic power supply.First,a data-driven reliability evaluation method for photovoltaic power supply is proposed.This method uses the XGBoost machine learning model to calculate IGBT junction temperature,which improves the calculation efficiency of IGBT junction temperature and avoids the dependence of evaluation accuracy on IGBT parameters.Then,the voltage/var optimization model of the distribution network considering the reliability of the photovoltaic power supply is established,and the average junction temperature and junction temperature fluctuation of IGBT are introduced into the model optimization goal.Then the model is transformed into the Markov decision process,and the agent training is completed based on the deep deterministic strategy gradient algorithm.Finally,the advantages of the proposed strategy in ensuring the speed of reactive voltage optimization and improving the reliability of photovoltaic power supply are verified through simulations on the IEEE 33-bus system.

张波;高远;李铁成;胡雪凯;贾焦心

河北省分布式储能与微网重点实验室(华北电力大学),河北省 保定市 071003国网河北省电力有限公司电力科学研究院,河北省 石家庄市 050021

动力与电气工程

配电网IGBT可靠性无功电压优化马尔可夫决策过程强化学习

distribution networkIGBT reliability assessmentreactive voltage optimizationMarkov decision processreinforcement learning

《中国电机工程学报》 2024 (015)

5934-5946,中插8 / 14

国家自然科学基金项目(52207102);河北省自然科学基金项目(E2022502059). Project Supported by National Natural Science Foundation of China(52207102);Natural Science Foundation of Hebei Province(E2022502059).

10.13334/j.0258-8013.pcsee.230415

评论