肺结核合并糖尿病患者营养不良预测模型的构建与验证OA北大核心CSTPCD
Construction and evaluation of a model for predicting malnutrition in patients with pulmonary tuberculosis and diabetes mellitus
目的:探究肺结核合并糖尿病患者发生营养不良的影响因素,构建并验证列线图预测模型.方法:采用便利抽样法收集2021年10月至2023年9月入住南京市第二医院结核科的401例肺结核合并糖尿病患者的临床资料,按照7∶3的比例将患者分为建模组(281例)和验证组(120例).采用logistic回归分析构建列线图预测模型,使用受试者工作特征曲线(ROC)曲线下面积(AUC)和Hosmer-Lemeshow拟合优度检验评价模型的预测效能和校准度.结果:年龄(OR=3.796,95%CI:1.159~12.627)、病程>1个月(OR=5.711,95%CI:1.879~17.274)、糖化血红蛋白(OR=5.951,95%CI:1.517~23.269)、查尔森并发症指数(OR=8.079,95%CI:2.345~27.681)、衰弱状况≥3分(OR=9.145,95%CI:2.404~34.172)是发生营养不良的独立危险因素.将上述变量构建列线图预测模型,预测模型的Hosmer-Lemeshow检验结果显示,P=0.625,AUC为0.897,约登指数为0.584,最佳临界值为0.615.验证组的敏感度为67.5%,特异度为93.8%,预测正确率为85.0%.结论:本研究构建的列线图模型具有一定的预测价值及临床适用性,为临床工作早期识别营养不良并给予针对性的营养干预措施提供参考.
Objective:To explore the influencing factors of malnutrition in patients with pulmonary tuberculosis complicated with diabetes mellitus,construct and verify a nomogram prediction model.Methods:The clinical data of 401 patients with tuberculosis combined with diabetes admitted to the Tuberculosis Department of Nanjing Second Hospital from October 2021 to September 2023 were collected with convenience sampling.The patients were divided into modeling group(n=281)and validation group(n=120)according to a ratio of 7∶3.Logistic regression analysis was performed to construct a nomogram prediction model.Area under curve(AUC)and Hosmer-Lemeshow goodness of fit test were used to evaluate the prediction efficiency and calibration degree of the model.Results:Age(OR=3.796,95%CI:1.159-12.627),duration of disease>1 month(OR=5.711,95%CI:1.879-17.274),glycosylated hemoglobin(OR=5.951,95%CI:1.517-23.269),Charlson comorbidity index(OR=8.079,95%CI:2.345-27.681)and FRAIL(fatigue,resistance,ambulation,illness and loss)score 3(OR=9.145,95%CI:2.404-34.172)were independent risk factors for malnutrition.The above variables were used to construct a nomogram prediction model.Hosmer-Lemeshow test of the model showed that P=0.625,AUC=0.897,the Youden index was 0.584 and the optimal critical value was 0.615.The sensitivity of the verification group was 67.5%,the specificity was 93.8%,and the prediction accuracy was 85.0%.Conclusion:The nomogram model constructed in this study has certain predictive value and clinical applicability,could provide reference for early identification of malnutrition and thereafter taking targeted nutrition intervention measures in clinical work.
刘玲;曾谊;王进;刘晓玲;刘艳;林霏申;郭晶
南京中医药大学附属南京医院(南京市第二医院)结核科,南京 211132
临床医学
结核,肺糖尿病营养不良预测列线图
Tuberculosis,pulmonaryDiabetes mellitusMalnutritionForecastingNomograms
《中国防痨杂志》 2024 (008)
903-909 / 7
Nanjing Health Science and Technology Development Special Fund(YKK22129) 南京市卫生科技发展专项资金项目(YKK22129)
评论