欠驱动航天器模糊自适应增强耦合姿态控制OA北大核心CSTPCD
Fuzzy gain-adapting coupling attitude control for under-actuated spacecraft
在快速轨道机动期间,针对固体推进作用下推力偏心、安装误差等因素带来的姿态强干扰问题,提出了一种基于推力矢量控制技术的航天器姿态欠驱动智能控制方法.首先,建立了航天器姿态误差动力学模型,并分析推力矢量控制输入的欠驱动特性.然后,考虑强干扰不确定性和滚转通道耦合弱的问题,设计了基于增强耦合策略与自适应模糊观测器的欠驱动智能控制律,结合模糊逻辑函数逼近强干扰不确定项并引入控制律中,实现航天器的姿态欠驱动智能控制,通过Lyapunov理论证明了系统的稳定性.最后,通过与分层滑模控制方法进行对比仿真,验证了所设计的方法能够使得三轴姿态稳定时间缩短14%,滚转通道耦合弱产生的静差被有效消除,为快速轨道机动期间的强干扰抑制技术提供基础.
During rapid orbital maneuvers,aiming at the strong attitude disturbance problem caused by thrust misalignment and installation errors under solid propulsion,an underactuated spacecraft intelligent attitude control method based on thrust vector control technology is proposed.Firstly,the dynamic model of spacecraft attitude error is established,and the underactuated characteristic of thrust vector control inputs are analyzed.Then,considering the issues of strong disturbance uncertainty and weak coupling in the roll channel,an underactuated intelligent control law based on enhanced coupling strategy and adaptive fuzzy observer is designed.The fuzzy logic function is used to approximate the strong disturbance uncertainty term and introduced into the control law to achieve underactuated intelligent attitude control of spacecraft.The stability of the system has been proven through Lyapunov theory.Finally,through numerical simulation and comparison with the hierarchical sliding mode control method,the simulation results show that the designed method can shorten the three-axis attitude stability time by 14%,and can effectively eliminate the static error caused by weak roll channel,which provides a foundation for strong disturbance suppression technology during rapid orbital maneuvers.
孟中杰;卢俊杰
西北工业大学航天学院,西安 710072
快速轨道机动欠驱动控制智能控制增强耦合自适应模糊观测器
rapid orbital maneuverunderactuated controlintelligent controlgain-adapting couplingadaptive fuzzy observer
《中国空间科学技术》 2024 (004)
11-19 / 9
国家自然科学基金(62173273);陕西省自然科学基础研究计划(2020JC-19)
评论