| 注册
首页|期刊导航|党政研究|利用机器学习技术防范网络意识形态风险的理论模型与逻辑进路

利用机器学习技术防范网络意识形态风险的理论模型与逻辑进路

秦博 徐浩铭

党政研究Issue(4):4-13,10.
党政研究Issue(4):4-13,10.

利用机器学习技术防范网络意识形态风险的理论模型与逻辑进路

Theoretical Model and Logical Approach for Mitigating Online Ideological Risks through Machine Learning Techniques

秦博 1徐浩铭2

作者信息

  • 1. 电子科技大学外国语学院||电子科技大学外国语学院东南亚研究所,四川 成都 611731
  • 2. 中共成都市委党校科技与生态文明教研部,四川 成都 610110
  • 折叠

摘要

Abstract

In the era of new media,the rapid development of the internet presents significant challenges to Chi-na's ideological security and governance.Modern machine learning techniques,particularly those based on deep neural networks,have the ability to extract meaning from vast amounts of unstructured textual data.Their appli-cations have expanded from simple image recognition to complex video content analysis,providing deeper in-sights into understanding and predicting public behavior and underlying ideologies.Given that predicting network dissemination paths relies on forecasting information forwarding,which reflects individual user behavior differ-ences,we propose a behavioral dissemination model for identifying online ideological risks based on machine learning.This system consists of an information collection layer,a data analysis layer,and an early warning lay-er.It enhances real-time awareness of the development and evolution of online ideologies,enabling relevant stakeholders to promptly assess and make decisions regarding ideological risks.This advances the intelligent management of online ideological risks.

关键词

机器学习/网络空间/意识形态/数据分析/风险管理

Key words

Machine Learning/Cyberspace/Ideology/Data Analysis/Risk Management

分类

社会科学

引用本文复制引用

秦博,徐浩铭..利用机器学习技术防范网络意识形态风险的理论模型与逻辑进路[J].党政研究,2024,(4):4-13,10.

基金项目

国家社科基金项目"中国科技形象在推特的计算传播对策研究"(20CXW016) (20CXW016)

党政研究

OA北大核心CHSSCDCSTPCD

2095-8048

访问量2
|
下载量0
段落导航相关论文