海南北部玄武岩实时温度单轴拉-压强度试验研究OA北大核心CSTPCD
Experimental study on real-time temperature uniaxial tensile-compression strength of basalts from the northern Hainan province
我国海南北部玄武岩储量丰富且分布广泛,矿化碳封存潜力巨大.实时温度下玄武岩的力学特性对深部玄武岩碳封存工程实践具有重要意义.本文采用配备高温环境炉的MTS万能材料试验机,对取自海南北部晚新生代玄武岩样品(主要矿物为富铝辉石和钙长石),开展了实时温度条件(25~250℃)下的巴西劈裂和单轴压缩试验,探究实时温度对其强度与变形破坏特征的影响.巴西劈裂试验表明玄武岩样品的抗拉强度随温度下降,且优势破裂面明显:室温时约13 MPa,50℃时显著下降至约8 MPa,250℃时下降至约7 MPa.单轴压缩试验结果显示玄武岩样品的杨氏模量与泊松比分别为31.0~175.3 GPa和0.13~0.48,最大值均出现在100~150℃;抗压强度为77.5~159.5 MPa,随温度上升有微弱下降趋势,但离散性增大;破裂模式随温度升高由单斜面剪切趋向多斜面剪切,可能是由于温度导致抗拉强度降低,进而导致拉张微裂隙比例增加.综合分析表明,玄武岩样品在25~250℃条件下力学特性的温度依赖性较为复杂:抗拉强度随温度升高而下降;单轴压缩力学参数离散性增加但无显著温度依赖性.其温度依赖性的主控机制为裂纹扩展速率(裂纹扩展激活能)的温度依赖性,而非热损伤.本研究结果表明,地下玄武岩碳封存工业实践中,随着埋藏深度(温度)的增加,玄武岩抗拉强度显著降低可能增加固碳反应引发的膨胀致裂的可能性,有利于提高玄武岩固碳效率,但玄武岩压缩变形破裂过程对固碳效率的影响仍需深入研究.
The north part of Hainan Province has widely distributed,abundant basaltic rocks providing a great potential for carbon geological sequestration via mineralization.Engineering practice of carbon sequestration in subsurface basalt requests to understanding of the mechanical properties of basalt at real-time temperature.In this study,Brazilian splitting and uniaxial compression experiments were performed on late Cenozoic basalt samples(mainly minerals including Augite,Al-rich,and Anorthite)collected from northern Hainan Province under real-time temperature conditions of 25-250℃,to investigate the effects of temperature on the strength and failure characteristics of the basalt samples.The Brazilian splitting tests show that the tensile strength of the basalt samples reduced from~13 MPa at room temperature to~8 MPa at 50℃,and finally to~7 MPa at 250℃,accompanied by a dominant fracture surface.The uniaxial compression experiments determine the Young's modulus and Poisson's ratio of 31.0-175.3 GPa and 0.13-0.48,respectively,having the maximum values at temperatures of 100-150℃.The compressive strength of 77.5-159.5 MPa decreases slightly with temperature but is associated with larger discreteness.The basalt samples upon uniaxial compression exhibited shear failure along a single plane at temperatures of 25-100℃,while shear failures along multi-planes at temperatures of 150-250℃.This may be attributed to the increase of the proportion of tensile microcracks upon temperature rise during the microcracking process.Combining the results from both experiments,the tensile strength reduction and the scattered uniaxial compression mechanical parameters observed at temperatures of 25-250℃are likely dominated by the thermally activated rate process,rather than the thermal damage mechanism.From a perspective of temperature-dependent mechanical properties of the collected basalt samples,this study implies that deep burial depth(higher temperature)favors the carbonation reaction of basalt and CO2,as the reduction of tensile strength may accelerate the fracturing process to enhance the reactive surface between basalt and CO2-rich fluids.Nevertheless,complex deformation and failure mechanisms caused by temperature during in-situ subsurface carbon sequestration in basalt also need serious considerations in future studies.
刘锐鸿;刘金锋
中山大学地球科学与工程学院,广东 珠海 519082中山大学地球科学与工程学院,广东 珠海 519082||广东省地球动力作用与地质灾害重点实验室/南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
土木建筑
海南玄武岩CO2地质封存破裂模式巴西劈裂抗拉强度
Hainan basaltcarbon geological sequestrationfailure modesBrazilian testtensile strength
《中山大学学报(自然科学版)(中英文)》 2024 (004)
19-28 / 10
广东省基础与应用基础研究基金(2021A1515012202)
评论