| 注册
首页|期刊导航|电机与控制应用|基于双模式分解多通道输入的VSC-STATCOM逆变器故障诊断模型

基于双模式分解多通道输入的VSC-STATCOM逆变器故障诊断模型

孔凡文 毕贵红 赵四洪 王祥伟 陈冬静 张靖超 陈仕龙

电机与控制应用2024,Vol.51Issue(7):103-118,16.
电机与控制应用2024,Vol.51Issue(7):103-118,16.DOI:10.12177/emca.2024.054

基于双模式分解多通道输入的VSC-STATCOM逆变器故障诊断模型

Fault Diagnosis Model of VSC-STATCOM Inverter Based on Dual-Mode Decomposition Multi-Channel Input

孔凡文 1毕贵红 1赵四洪 1王祥伟 2陈冬静 1张靖超 1陈仕龙1

作者信息

  • 1. 昆明理工大学电力工程学院,云南昆明 650500
  • 2. 云南电网公司昆明供电局电力控制中心,云南昆明 650041
  • 折叠

摘要

Abstract

Aiming at the problems of insufficient signal feature extraction,insufficient recognition ability of deep learning network and low recognition rate under high noise condition in inverter fault diagnosis in traditional voltage source converter static synchronous compensator,an inverter fault diagnosis method based on the combination of dual-mode decomposition,multi-channel input(MCI),parallel convolutional neural network(PCNN),bi-directional long and short-term memory(BiLSTM)neural network and self-attention(SA)mechanism is proposed.Firstly,the three-phase current output of the inverter is decomposed by variational mode decomposition and time-varying filter empirical mode decomposition,which reduces the complexity of the original signal and realizes the law complementation between different modal components.Secondly,MCI-PCNN-BiLSTM-SA combined model is used to extract,learn and recognize the feature matrix.Finally,the proposed method is validated by simulation,and the results show that the proposed method has strong feature extraction ability,with an average recognition rate of 99.48%in the case of no noise and 95.59%in the case of high noise.

关键词

逆变器故障诊断/双模式分解/多通道输入/并行卷积神经网络/自注意力

Key words

inverter fault diagnosis/dual-mode decomposition/multi-channel input/parallel convolutional neural network/self-attention

分类

信息技术与安全科学

引用本文复制引用

孔凡文,毕贵红,赵四洪,王祥伟,陈冬静,张靖超,陈仕龙..基于双模式分解多通道输入的VSC-STATCOM逆变器故障诊断模型[J].电机与控制应用,2024,51(7):103-118,16.

电机与控制应用

OACSTPCD

1673-6540

访问量0
|
下载量0
段落导航相关论文