首页|期刊导航|计算机技术与发展|基于YOLO的集装箱锁销分类联邦学习网络

基于YOLO的集装箱锁销分类联邦学习网络OACSTPCD

中文摘要

集装箱锁销自动拆卸任务是实现无人码头的最后一个技术瓶颈,锁销图像分类实时结果用于后继机械手启用适配的拆卸装置和动作程序,是自动化拆卸任务的关键环节。丰富多样的锁销数据集有利于保障锁销分类神经网络的鲁棒性。然而,由于锁销使用具有商业敏感性、图像网络传输开销大等原因,锁销使用方如码头往往不将其拥有的锁销图像数据与他方共享,而是各自迭代自己的神经网络模型。这导致各使用方的自有模型对其之前少用的锁销的分类准确率较低,极易在拆卸时引发故障,从而影响无人化操…查看全部>>

王漫;李培剀;熊勇

上海第二工业大学计算机与人工智能学院,上海201209上海第二工业大学计算机与人工智能学院,上海201209 中国科学院上海微系统与信息技术研究所,上海201899中国科学院上海微系统与信息技术研究所,上海201899

计算机与自动化

锁销图像分类联邦学习神经网络分布式架构早停

《计算机技术与发展》 2024 (8)

P.189-196,8

上海市科技创新行动计划项目(21DZ1200500)。

10.20165/j.cnki.ISSN1673-629X.2024.0144

评论

您当前未登录!去登录点击加载更多...