| 注册
首页|期刊导航|重庆理工大学学报|多特征提取的可解释性锂电池健康状态估计方法研究

多特征提取的可解释性锂电池健康状态估计方法研究

王奥博 霍为炜 贾云旭

重庆理工大学学报2024,Vol.38Issue(11):47-54,8.
重庆理工大学学报2024,Vol.38Issue(11):47-54,8.DOI:10.3969/j.issn.1674-8425(z).2024.06.006

多特征提取的可解释性锂电池健康状态估计方法研究

Research on explainable lithium battery health state estimation method with multi-feature extraction

王奥博 1霍为炜 2贾云旭1

作者信息

  • 1. 北京信息科技大学 机电工程学院,北京 100192
  • 2. 北京信息科技大学 机电工程学院,北京 100192||新能源汽车北京实验室,北京 100192
  • 折叠

摘要

Abstract

The estimation of the state of health (SOH)for lithium-ion batteries is an essential part for battery management system (BMS).It is crucial to have an accurate prediction for the SOH of lithium-ion batteries to ensure the safe and stable operation.In order to address the issues of difficult access to the capacity decline state and the lack of transparency of the"black-box"model,this paper proposes an explainable lithium-ion batteries SOH estimation method based on multi-feature extraction.Firstly,in the data processing stage,the health features are extracted by introducing a combination of direct measurement and second-order processing;then the battery SOH is estimated by the XGBoost model,and the Shapley additive explanations (SHAP)algorithm is introduced to explain the marginal contribution of each health feature to the prediction results from the local loop and global levels,respectively;finally,the effectiveness of the proposed method is verified by SOH prediction experiments on three batteries.The results of the comparative experiments indicate that the mean absolute error (MAE)and root mean square error (RMSE )of the proposed lithium-ion battery capacity prediction model are lower than 0.7% and 1.0%,respectively.

关键词

锂离子电池/健康状态/可解释性/多特征提取/XGBoost

Key words

lithium-ion batteries/state of health/Shapley additive explanations/multi-feature extraction/XGBoost

分类

信息技术与安全科学

引用本文复制引用

王奥博,霍为炜,贾云旭..多特征提取的可解释性锂电池健康状态估计方法研究[J].重庆理工大学学报,2024,38(11):47-54,8.

基金项目

国家自然科学基金面上项目(52077007) (52077007)

重庆理工大学学报

OA北大核心

1674-8425

访问量2
|
下载量0
段落导航相关论文