基于二维卷积的连续血压预测系统OACSTPCD
Continuous blood pressure prediction system based on two-dimensional convolution
针对生命体征信号数字化采集和连续血压预测等需求,设计并实现了 一种基于二维卷积的连续血压预测系统.在系统硬件部分使用ESP32模组、AD8232模块和PulseSensor传感器,采集获得的人体心电图(ECG)和光电容积脉搏波(PPG)信号数据并通过MQTT协议传输至服务端处理.本文算法部分使用格拉米角差场(GADF)、二维卷积和模型剪枝技术,设计并训练了使用ECG和PPG信号预测人体连续血压的神经网络模型,并分别在开源数据集和自制数据集中测试了连续血压预测模型的性能.本文系统为重要体征信号采集和连续血压预测提供了一个有效的参考方案.
To address the demands of digital acquisition of vital signs signals and continuous blood pressure prediction,this paper designs and constructs a continuous blood pressure prediction system based on two-dimensional(2D)convolution.The system hardware adopts ESP32 module,AD8232 module and PulseSensor sensor to collect the human electrocardiography(ECG)and photoplethysmography(PPG)signal data,which are then transmitted to the server through the MQTT protocol for the consequent processing.Regarding the algorithms of this paper,a neural network model using ECG and PPG signals was designed and trained to predict continuous human blood pressure,employing the Gramian angular difference field(GADF),2D convolution,and model pruning techniques.The performance of the continuous blood pressure prediction model is verified on both classic open-source datasets and self-collected datasets.This system proposed in this paper provides a practical reference scheme for the vital signs signal acquisition and continuous blood pressure prediction.
崔守毅;杨国伟;何羽恒;管静萱;胡远凝;廖丹丹;荆凯
杭州电子科技大学通信工程学院,杭州 310018
计算机与自动化
体征信号采集连续血压预测格拉米角场二维卷积模型剪枝
vital sign signal acquisitioncontinue blood pressure predictionGramian angular field2D convolutionmodel pruning
《集成电路与嵌入式系统》 2024 (008)
1-6 / 6
国家自然科学基金资助项目(52175460).
评论