|国家科技期刊平台
首页|期刊导航|煤田地质与勘探|神府区块深部煤储层力学特性及裂缝扩展机制

神府区块深部煤储层力学特性及裂缝扩展机制OA北大核心CSTPCD

Mechanical characteristics and fracture propagation mechanism of deep coal reservoirs in the Shenfu block

中文摘要英文摘要

[目的]明确煤力学性质和地应力的分布特征及其对人工裂缝形态和扩展行为的控制机制,对深部煤层压裂设计、井网部署和煤层气资源开发至关重要.[方法]以鄂尔多斯盆地东缘北部神府区块太原组 8+9号煤为研究对象,基于声波测井、密度测井、注入/压降试井和排采资料,系统分析煤层及其顶底板岩层的力学性质和地应力分布特征,揭示力学性质和地应力对水力裂缝的控制机理.[结果和结论]结果表明:(1)8+9号煤层与顶底板形成了泥岩-煤-泥岩(占77.4%)、砂岩-煤-泥岩(15.5%)等 6种组合.(2)基于声波和密度测井计算的力学参数显示,煤弹性模量在 4.83~13.69 GPa(平均 6.28 GPa),泊松比 0.31~0.41(平均 0.37),区域上南北脆性高,中部塑性高.(3)注入/压降试井计算结果显示,研究区最大水平主应力介于 31.11~39.11 MPa,最小水平主应力变化范围为 25.78~29.94 MPa;声波测井计算结果显示,垂向应力(平均 49.12 MPa)>最大水平主应力(平均 39.50 MPa)>最小水平主应力(平均 33.80 MPa),煤层与顶底板最小水平主应力差在 0~12.75 MPa.(4)Abaqus和Fracpro PT模拟结果显示,煤弹性模量越大,裂缝高度相对越大,当顶板与煤层的力学强度差较小时防止穿层;煤层水平主应力差增大,容易沿最大水平主应力形成单一裂缝;煤层水平主应力较顶底板水平主应力越小,易在煤层内形成较长、较低、较宽的裂缝,且不易穿层.研究认为实施较大的压裂规模、缝内暂堵技术和控制裂缝净压力等手段是提高神府区块 8+9号煤水力压裂效果的主要途径.

[Objective]Clarifying the mechanical properties and in-situ stress distributions of coal seams,along with the mechanisms behind their control over the morphologies and propagation behavior of artificially induced fractures,is cru-cial to the fracturing design,well pattern deployment,and coalbed methane(CBM)production of deep coal seams.[Methods]This study investigated the Nos.8 and 9 coal seams of the Taiyuan Formation in the Shenfu block in the northern portion of the eastern margin of the Ordos Basin.Using data from sonic logging,density logging,injection/fal-loff well tests,and production,this study systematically analyzed the mechanical properties and in-situ stress distribu-tions of the coal seams,as well as rock layers on their roofs and floors.Furthermore,this study revealed the mechanisms behind the controlling effects of the mechanical properties and in-situ stress on hydraulic fractures.[Results and Con-clusions]Key findings are as follows:(1)The Nos.8 and 9 coal seams and their roofs and floors consist of six as-semblages including mudstone-coal-mudstone(77.4%)and sandstone-coal-mudstone(15.5%).(2)The mechanical para-meters,calculated based on sonic and density logging,indicate that the coal seams exhibit elastic moduli ranging from 4.83 GPa to 13.69 GPa(average:6.28 GPa)and Poisson's ratios ranging from 0.31 to 0.41(average:0.37).Regionally,they manifest high brittleness in the north and south and high plasticity in the central part.(3)The calculation results of injection/falloff well tests show that the maximum and minimum horizontal principal stresses in the study area range between 31.11 MPa and 39.11 MPa and between 25.78 GPa and 29.94 MPa,respectively.The sonic logging-based cal-culation results suggest that various stresses decrease in the order of vertical stress(average:49.12 MPa),maximum ho-rizontal principal stress(average:39.50 MPa),and minimum horizontal principal stress(average:33.80 MPa).The dif-ference in minimum horizontal principal stresses between a coal seam and its roof and floor varies between 0 and 12.75 MPa.(4)The simulation results obtained using software Abaqus and Fracpro PT indicate that higher elastic moduli of the coal seams correspond to larger fracture heights,necessitating preventing fractures from crossing layers in the case of a small difference the mechanical strength of coal seams and that of their roofs.The simulation results also suggest that increasing the difference in the horizontal principal stress of coal seams tends to induce individual fractures along the direction of the maximum horizontal principal stress.Furthermore,lower horizontal principal stresses of the coal seams with respect to their roofs and floors contribute more significantly to the formation of longer,lower,and wider fractures in the coal seams,with a minimal possibility of crossing layers.Overall,the findings lead to the conclusion that the primary approaches for enhancing the hydraulic fracturing performance of the Nos.8 and 9 coal seams in the Shenfu block include a large fracturing scale,temporary plugging within fractures,and the control of net fracture pressures.

米洪刚;吴见;彭文春;徐立富;李勇

中联煤层气有限责任公司,北京 100016||三气共采省技术创新中心,山西 太原 030008中国矿业大学(北京)地球科学与测绘工程学院,北京 100083

地质学

深部煤层气煤-岩组合类型力学性质地应力数值模拟

deep coalbed methanecoal-rock assemblage typemechanical propertyin-situ stressnumerical simulation

《煤田地质与勘探》 2024 (008)

32-43 / 12

中海油"十四五"重大科技项目(KJGG-2022-1002)

10.12363/issn.1001-1986.24.03.0167

评论