| 注册
首页|期刊导航|煤田地质与勘探|基于Curvelet域的注意力机制卷积网络地震数据去噪

基于Curvelet域的注意力机制卷积网络地震数据去噪

包乾宗 周梅 邱怡

煤田地质与勘探2024,Vol.52Issue(8):165-176,12.
煤田地质与勘探2024,Vol.52Issue(8):165-176,12.DOI:10.12363/issn.1001-1986.24.02.0133

基于Curvelet域的注意力机制卷积网络地震数据去噪

Seismic data denoising based on the convolutional neural network with an attention mechanism in the curvelet domain

包乾宗 1周梅 2邱怡3

作者信息

  • 1. 长安大学地质工程与测绘学院,陕西 西安 710054||自然资源部矿山地质灾害成灾机理与防控重点实验室,陕西 西安 710054||海洋油气勘探国家工程研究中心,北京 100028
  • 2. 长安大学地质工程与测绘学院,陕西 西安 710054
  • 3. 中国电建集团西北勘测设计研究院有限公司,陕西 西安 710065
  • 折叠

摘要

Abstract

[Objective]Noise in seismic data significantly affects the accurate interpretation of subsurface stratigraphic information.Given that effective signals with pronounced lateral correlations in seismic data are distributed in specific coefficients but random noise typically spreads uniformly over all coefficients in the curvelet domain,more effective separation of signals can be achieved.[Methods]The convolutional neural network based on the attention mechanism can adaptively extract key information by focusing on important features of images.Hence,this study proposed a noise attenuation method for seismic data using a convolutional neural network based on the curvelet transform and attention mechanism(Curvelet-AU-Net).First,the curvelet coefficients of noise-containing seismic data were obtained through curvelet transform to analyze the distributions of effective signals and noise in the curvelet domain.Second,a U-Net net-work with a convolutional block attention module(CBAM)was employed,with the curvelet coefficients of noise-con-taining seismic data as input data for training and the curvelet coefficients of noise-free seismic data as labels.Then,the parameters of the network were updated by comparing the loss function values of actual outputs and labels and back-propagating gradients layer by layer.The network training was completed as the loss function value reached its minim-um.Finally,the test data were put into the trained network model.The denoising results of seismic data were obtained by performing inverse curvelet transform on the network output data.[Results and Conclusions]The processing results of simulation and actual data show that compared to conventional methods and ordinary convolutional networks,the method proposed in this study demonstrates superior attenuation effects on common noise(e.g.,random noise)under dif-ferent noise levels and scales,achieving higher signal-to-noise ratios and fidelity for seismic signals.This method,integ-rating the sparse representation of the Curvelet transform and the adaptability of deep learning models,provides a novel approach for the noise attenuation of seismic data.

关键词

地震数据去噪/深度学习/U-net网络/Curvelet变换/注意力机制

Key words

Seismic data denoising/Deep learning/U-net network/Curvelet transform/Attention mechanism

分类

天文与地球科学

引用本文复制引用

包乾宗,周梅,邱怡..基于Curvelet域的注意力机制卷积网络地震数据去噪[J].煤田地质与勘探,2024,52(8):165-176,12.

基金项目

国家重点研发计划项目课题(2022YFC3003402) (2022YFC3003402)

陕西省自然科学基金项目(2021JM-156) (2021JM-156)

煤田地质与勘探

OA北大核心CSTPCD

1001-1986

访问量0
|
下载量0
段落导航相关论文