| 注册
首页|期刊导航|铁道货运|基于深度学习的铁路货场作业安全状态识别与监控技术研究

基于深度学习的铁路货场作业安全状态识别与监控技术研究

黄嘉怡 汤银英 郭赫臣 李建国 傅健

铁道货运2024,Vol.42Issue(8):41-49,9.
铁道货运2024,Vol.42Issue(8):41-49,9.DOI:10.16669/j.cnki.issn.1004-2024.2024.08.07

基于深度学习的铁路货场作业安全状态识别与监控技术研究

Identification and Monitoring of Operation Safety Status in Railway Freight Yard Based on Deep Learning

黄嘉怡 1汤银英 1郭赫臣 1李建国 2傅健2

作者信息

  • 1. 西南交通大学 交通运输与物流学院,四川 成都 611756
  • 2. 中国铁路兰州局集团有限公司 货运部,甘肃 兰州 730000
  • 折叠

摘要

Abstract

In recent years,China's railway has made certain achievements in management informatization,freight transportation digitalization,and other aspects.However,the whole process of freight transport still lacks intelligent monitoring,identification,analysis,and early warning of safety issues.Railway freight yard operations are still supervised with the help of front-end cameras,and the identification of safety risks during operations relies on an extensive mode featuring manual control and decisions from experience.Safety hazards tend to occur under this mode with high work intensity.This paper extracted the points of static unsafety status and dynamic unsafety status identification by analyzing the points of operation safety risks identification in railway freight yards.Then,the deep learning technology was utilized to construct the framework of the operation safety supervision system in railway freight yards encompassing a whole process from intelligent identification to automatic warning.Finally,the technical solution ideas for realizing safe operation in railway freight yards were proposed.This achievement is of great significance in ensuring personal safety and improving safety monitoring and early warning in freight transport.

关键词

铁路运输/自动控制/深度学习/铁路货场/作业安全

Key words

Railway Transportation/Automatic Control/Deep Learning/Railway Freight Yard/Operation Safety

分类

交通工程

引用本文复制引用

黄嘉怡,汤银英,郭赫臣,李建国,傅健..基于深度学习的铁路货场作业安全状态识别与监控技术研究[J].铁道货运,2024,42(8):41-49,9.

基金项目

中国铁路兰州局集团有限公司科技研究开发计划课题(LZJKY2023006-1) (LZJKY2023006-1)

铁道货运

1004-2024

访问量0
|
下载量0
段落导航相关论文