|国家科技期刊平台
首页|期刊导航|铁道运输与经济|基于卷积神经网络的交通运输业碳排放预测研究

基于卷积神经网络的交通运输业碳排放预测研究OA北大核心

Transportation Carbon Emission Prediction Based on Convolutional Neural Network

中文摘要英文摘要

交通运输业作为碳排放主要来源之一,其低碳发展对于我国双碳目标的实现具有重要现实意义.研究基于拓展的STIRPAT模型,从人口规模、经济水平、技术水平、交通运输水平以及绿化水平5个维度选取交通运输业碳排放影响因素,根据1997-2019年碳排放量及影响因素数据建立卷积神经网络碳排放预测模型.在此基础上,设置低碳、基准和高碳3种不同情景对京津沪渝的交通运输业碳排放情况进行预测分析.结果表明:在基准情景和低碳情景下,京津沪渝均表现出明显的"波动上升—达峰—缓慢下降"的趋势;而在高碳情景下,京津沪渝则表现出明显持续增长趋势,同时低碳情景下京津沪渝交通运输业碳达峰时间多早于2030年,且峰值明显低于基准情景和高碳情景的碳排放量值,更加符合交通运输业的低碳发展理念.

As one of the main sources of carbon emission,the low-carbon development of the transportation industry is of great practical significance for realizing China's double carbon goal.Based on the extended STIRPAT model,this paper selected the influencing factors of the transportation industry from five dimensions:population size,economic level,technology level,transportation level,and greening level.Then,according to the data of carbon emissions and influencing factors from 1997 to 2019,the paper built a convolutional neural network carbon emission prediction model.On this basis,the carbon emissions of the transportation industry in four municipalities were predicted under three different scenarios of low-carbon,baseline,and high-carbon.The results show that under the baseline scenario and the low-carbon scenario,the four municipalities all show an obvious trend of"fluctuation rising-peak-slow decline".However,under the high-carbon scenario,the four municipalities show a clear trend of continuous growth.Under the low-carbon scenario,the carbon peak time of the transportation industry of the four municipalities is earlier than 2030,and the peak value is significantly lower than that of the other two scenarios,which is more in line with the low-carbon development concept of the transportation industry.

焦柳丹;刘莹;吴雅;霍小森

重庆交通大学 经济与管理学院,重庆 400074西南大学 资源环境学院,重庆 400716

交通运输

卷积神经网络交通运输业STIRPAT模型影响因素碳排放预测

Convolutional Neural NetworkTransportation IndustrySTIRPAT ModelInfluencing FactorsCarbon Emission Prediction

《铁道运输与经济》 2024 (008)

49-57 / 9

重庆市教委人文社会科学研究项目(23SKGH137)

10.16668/j.cnki.issn.1003-1421.2024.08.05

评论