一种阴离子浸出策略合成金属羟基氧化物用于电催化甘油氧化OA北大核心CSTPCD
An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol
亲核氧化反应在可持续生产增值化学品中扮演着重要角色.电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C1至C3衍生产物.非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mA·cm-2).研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行,即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘油).因此,理解甘油氧化反应中电催化剂的演变至关重要.在本文中,通过循环伏安法活化钼酸镍(NiMoO4),开发了一种钼掺杂的羟基氧化镍(Mo-NiOOH)催化剂.通过多种表征方法对Mo-NiOOH进行了系统表征,结果显示,Mo-NiOOH继承了NiMoO4前驱体的纳米片阵列形貌,但Mo含量降低,证明循环伏安法活化后实现了从氧化物到羟基氧化物的相重构.此外,Mo-NiOOH中Ni3+/Ni2+的比例高于循环伏安法活化制备的NiOOH.在活化过程中,Mo物种从NiMoO4中浸出,制备得到的Mo-NiOOH保留了NiMoO4前驱体的纳米片阵列形貌.与氢氧化镍(Ni(OH)2)经循环伏安法活化合成的NiOOH相比,Mo-NiOOH具有更高的Ni3+/Ni2+比例以及更高的电化学比表面积(ECSAs),且促进了Ni2+氧化为Ni3+.因此,Mo-NiOOH达到高电流密度(400 mA·cm-2)的电位(1.51 V vs.RHE)低于NiOOH(1.84 V vs.RHE).此外,Mo-NiOOH表现出高于NiOOH的甲酸盐法拉第效率(84.7%vs.59.6%),表明钼掺杂加速了碳―碳键断裂.多电位阶跃实验显示,NiOOH和Mo-NiOOH催化的甘油电氧化通过类似的羟基氧化物介导的间接氧化机理进行.原位电化学阻抗谱和原位拉曼光谱证实,Mo掺杂促进了甘油氧化反应动力学以及Ni2+氧化为Ni3+的过程,导致Mo-NiOOH比NiOOH具有更高的活性和甲酸选择性.本研究通过可溶性阴离子浸出策略来调节羟基氧化物表面结构,为设计高性能亲核氧化反应电催化剂提供了指导.
Nucleophile oxidation reaction(NOR)is emerging as a significant approach for the sustainable production of value-added chemicals.Among the various types,electrocatalytic glycerol oxidation reaction(GOR)stands out as a crucial method for producing C1 to C3 chemicals including formic acid(FA).Non-noble-metal-based(oxy)hydroxides have found extensive use in GOR,yet achieving industrially-demanded current densities(>300 mA·cm-2)at moderate potentials remains a challenge.It is well documented that GOR catalyzed by(oxy)hydroxides follows an indirect oxidation mechanism.Specifically,the nucleophile,glycerol,undergoes oxidation by the electrogenerated oxyhydroxides with electrophilic adsorption oxygen.Therefore,comprehending the evolution of the electrocatalyst in GOR is critically important.In this paper,we have developed molybdenum-doped nickel oxyhydroxides(Mo-NiOOH)through cyclic voltammetry(CV)activation of nickel molybdate(NiMoO4).We demonstrated that Mo species leach from NiMoO4,and the resulting Mo-NiOOH retains the nanosheet array morphology of NiMoO4.We subjected the freshly prepared Mo-NiOOH to systematic characterizations employing techniques such as scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS)mapping,Raman spectroscopy,inductively coupled plasma-mass spectrometry(ICP-MS),and X-ray photoelectron spectroscopy(XPS).The above structural characterizations confirm that Mo-NiOOH inherits the nanosheet array morphology of the NiMoO4 precursor with reduced Mo content,thereby indicating the phase reconstruction from oxides to oxyhydroxides post CV activation.Furthermore,the Ni3+/Ni2+ratio in Mo-NiOOH surpasses that in NiOOH derived from CV activation of Ni(OH)2.Mo-NiOOH exhibits elevated electrochemically active surface areas(ECSAs)and a higher Ni3+/Ni2+ratio compared to NiOOH obtained through CV activation of Ni(OH)2,facilitating the Mo-NiOOH exhibits higher ratio of Ni3+/Ni2+,higher electrochemically active surface areas(ECSAs)than NiOOH,and facilitated oxidation of Ni2+to Ni3+.Consequently,Mo-NiOOH requires a lower applied potential than NiOOH(1.51 V versus 1.84 V vs.reversible hydrogen electrode(RHE))to achieve a high current density(400 mA·cm-2).Additionally,Mo-NiOOH demonstrates higher Faradaic efficiency towards formate(FEformate)in contrast to NiOOH(84.7%versus 59.6%),indicating enhanced carbon-carbon(C―C)bond cleavage due to Mo doping.Multi-potential step(STEP)experiments indicate that GOR catalyzed by NiOOH and Mo-NiOOH follows a similar indirect oxidation mechanism mediated by oxyhydroxides.Operando electrochemical impedance spectroscopy(EIS)and in situ Raman spectroscopy confirmed that Mo doping in NiOOH accelerates GOR kinetics and the oxidation of Ni2+to Ni3+,contributing to the higher activity and formate selectivity of Mo-NiOOH than NiOOH.The strategy of surface modulation of oxyhydroxides through leaching of soluble anions offers guidelines for the rational design of high-performance NOR electrocatalysts.
王烨;葛瑞翔;刘翔;李敬;段昊泓
清华大学化学系,北京 100084清华大学化学系,北京 100084||清华大学化学系稀土新材料教育部工程研究中心,北京 100084
化学
循环伏安法活化电催化甘油电氧化羟基氧化物重构
CV activationElectrocatalysisGlycerol electro-oxidationOxyhydroxidesReconstruction
《物理化学学报》 2024 (007)
43-46 / 4
This project was supported by Beijing Natural Science Foundation,China(JQ22003),the National Natural Science Foundation of China(21978147,21935001)and Beijing Municipal Natural Science Foundation,China(2214063).北京市自然科学基金(J122003),国家自然科学基金(21978147,21935001),北京市自然科学基金(2214063)资助
评论