富含氧空位S型MIL-101(Fe)/BiOCl异质结增强光催化去除Cr(Ⅵ)OA北大核心CSTPCD
An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ)
Cr(Ⅵ)污染物有毒有害且不可生物降解,会对环境造成严重破坏.光催化技术可实现Cr(Ⅵ)的有效去除,在解决环境污染问题方面具有良好前景.因此,本文通过在富含氧空位(OV)的BiOCl微球表面原位生长MIL-101(Fe)晶体,构建了一种新型富氧缺陷MOF基S型异质结催化剂-MIL-101(Fe)/BiOCl.这种催化剂在高浓度Cr(Ⅵ)的光催化还原中表现出优异活性,60 min内对Cr(Ⅵ)溶液(10 mg∙L-1,100 mL)的光还原效率达到88.5%,其光催化效率分别是BiOCl和MIL-101(Fe)的4.4和9.0倍.而且,MIL-101(Fe)/BiOCl还表现出良好的抗环境干扰性、稳定性和可重复使用性,显示出令人印象深刻的实际应用前景.实验结果表明,富含氧空位的S型MIL-101(Fe)/BiOCl异质结构暴露了大量活性位点,促进了界面电荷分离,提高了光生载流子的氧化还原能力,从而增强了光催化性能.另外,经过活性自由基检测发现,e-和∙O2-是光催化反应过程中的主要活性物种.这些研究结果将为开发用于环境治理的缺陷半导体/MOF S型光催化剂开辟新的途径.
Hexavalent chromium(Cr(Ⅵ))may be a hazardous and non-biodegradable waste matter which will cause substantial environmental damage.Fabricating powerful photosystems to achieve efficacious elimination of Cr(Ⅵ)holds eminent promise in solving environmental issues.Thanks to their outstanding photo/electrical properties,large surface area,and customizable structure,metal-organic framework(MOF)catalysts have attracted widespread attention within the field of pollutant degradation and reduction.Nevertheless,due to the recombination of photo-generated charge carriers,pristine semiconductor MOFs'photocatalytic performance is inadequate.To overcome this challenge,one of the most typical and effective strategies is to create heterojunctions by combining MOFs with another semiconductor.Among these strategies,the innovative step-scheme(S-scheme)heterojunction has gained increasing prominence.Unlike traditional type II and Z-scheme heterojunctions,the built-in electric field at the S-scheme heterojunction boundary enhances spatial charge separation and boosts redox capacity,thereby improving photocatalytic performance.In this study,a creative MOF-based S-scheme architecture with oxygen vacancies(OV)was built via in situ growth of MIL-101(Fe)crystals on the surface of OV-rich BiOCl microspheres.The optimized MIL-101(Fe)/BiOCl heterojunction exhibited exceptional photocatalytic performance in photo-reducing high concentrations of Cr(Ⅵ)and 88.5%of Cr(Ⅵ)solution(10 mg∙L-1,100 mL)can be removed within 60 min,which is about 4.4 and 9.0 times that of BiOCl and MIL-101(Fe).Besides,the MIL-101(Fe)/BiOCl manifests impressive practical implementation prospect due to its high anti-interference property,robustness and reusability.Photoelectron spectroscopy results validated that built-in electric field,bending band,and Coulomb attraction facilitated the transition of photoelectrons from the conduction band(CB)of BiOCl to the valence band(VB)of MIL-101(Fe),where they recombined with the photo-created holes.This suggests an S-scheme interfacial photo-carrier detachment mechanism at the MIL-101(Fe)/BiOCl interface.In addition,BET measurements indicated a notable increase in surface area with the introduction of MIL-101(Fe).The OV-rich S-scheme MIL-101(Fe)/BiOCl heterostructure boasts more reactive sites,enhanced interfacial charge separation,and optimal redox ability of photo-carriers,leading to enhanced photocatalytic properties.Measurements of active radical scavenging and electron spin resonance(ESR)confirm that e-and ∙O2-are the primary active species during photocatalysis.These discoveries would open up new avenues for developing defective semiconductor/MOF S-scheme photocatalyst for environmental purification.
王春春;游常俊;戎珂;申楚琦;杨方;李世杰
浙江海洋大学海洋科学与技术学院,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022上海工程技术大学机械与汽车工程学院,上海 201620
化学
MOFS型异质结MIL-101(Fe)BiOClCr(Ⅵ)光还原氧空位
MOFS-scheme heterojunctionMIL-101(Fe)BiOClCr(Ⅵ)photoreductionOxygen vacancy
《物理化学学报》 2024 (007)
50-53 / 4
This work has been financially supported by National Natural Science Foundation of China(U1809214,51708504),the Natural Science Foundation of Zhejiang Province of China(LY20E080014),and the Science and Technology Project of Zhoushan of China(2022C41011).国家自然科学基金(U1809214,51708504),浙江省自然科学基金(LY20E080014),舟山科技项目(2022C41011)资助项目
评论