| 注册
首页|期刊导航|浙江电力|基于改进灰狼算法和TCN-QRF的超短期光伏出力概率预测

基于改进灰狼算法和TCN-QRF的超短期光伏出力概率预测

朱涛 杨欢红 肖峰 李光 李广一 朱伟星 叶婧元

浙江电力2024,Vol.43Issue(8):85-93,9.
浙江电力2024,Vol.43Issue(8):85-93,9.DOI:10.19585/j.zjdl.202408010

基于改进灰狼算法和TCN-QRF的超短期光伏出力概率预测

Probabilistic forecasting of ultra-short-term PV output using the improved GWO and TCN-QRF

朱涛 1杨欢红 2肖峰 1李光 1李广一 1朱伟星 1叶婧元2

作者信息

  • 1. 上海华电奉贤热电有限公司,上海 201499
  • 2. 上海电力大学,上海 200090
  • 折叠

摘要

Abstract

As the share of photovoltaic(PV)power generation grows increasingly within electric power systems,the accurate probabilistic forecasting of PV output can be help for grid regulation and operation.To enhance forecasting precision,a probabilistic forecasting method for ultra-short-term photovoltaic output using the improved grey wolf optimization(GWO),temporal convolutional neural networks and quantile random forests(TCN-QRF)is proposed.Firstly,the preprocessed time series dataset for PV output is converted into a supervised learning dataset.Then,the TCN is used to extract the temporal features of PV output as the input to the QRF,constructing the TCN-QRF model.Finally,the GWO is improved using the nonlinear convergence factor and Gaussian mutation strategy.The improved GWO efficiently selects hyperparameters for TCN-QRF,enabling a more precise probabilistic forecasting of PV output.

关键词

改进灰狼算法/概率预测/光伏出力/TCN-QRF

Key words

improved GWO/probabilistic forecasting/PV output/TCN-QRF

引用本文复制引用

朱涛,杨欢红,肖峰,李光,李广一,朱伟星,叶婧元..基于改进灰狼算法和TCN-QRF的超短期光伏出力概率预测[J].浙江电力,2024,43(8):85-93,9.

基金项目

国家自然科学基金(52177100) (52177100)

中国华电集团公司科技项目(CHDKJ23-02-233) (CHDKJ23-02-233)

浙江电力

OACSTPCD

1007-1881

访问量3
|
下载量0
段落导航相关论文