| 注册
首页|期刊导航|电气技术|基于Transformer与信息融合的绝缘子缺陷检测方法

基于Transformer与信息融合的绝缘子缺陷检测方法

陈天航 曾业战 邓倩 钟春良

电气技术2024,Vol.25Issue(8):11-17,7.
电气技术2024,Vol.25Issue(8):11-17,7.

基于Transformer与信息融合的绝缘子缺陷检测方法

Insulator defect detection method based on Transformer and information fusion

陈天航 1曾业战 1邓倩 2钟春良1

作者信息

  • 1. 湖南工业大学电气与信息工程学院,湖南 株洲 412007
  • 2. 湖南工业大学轨道交通学院,湖南 株洲 412007
  • 折叠

摘要

Abstract

Aiming at the existing insulator aerial images,which have complex backgrounds and are difficult to detect flashover and broken defects,a global and local information fusion(GLIF)-you only look once v8s(YOLOv8s)insulator detection algorithm is proposed.The algorithm uses EfficientFormerV2 as the backbone network to improve the model's ability to extract global information.A feature enhancement module(FEM)is designed based on global and local information to reduce the loss of deep network information through information fusion.Ablation experiments and comparison experiments are carried out on insulators defects dataset,and the experimental results show that the proposed algorithm achieves 77.5%class-wide average accuracy,and its flashover and broken defect detection accuracy reaches 67.7%and 73.5%.Compared with other mainstream algorithms,the detection frame confidence of the proposed algorithm is higher.

关键词

绝缘子/缺陷检测/YOLOv8s/Transformer

Key words

insulators/defect detection/YOLOv8s/Transformer

引用本文复制引用

陈天航,曾业战,邓倩,钟春良..基于Transformer与信息融合的绝缘子缺陷检测方法[J].电气技术,2024,25(8):11-17,7.

基金项目

湖南省自然科学基金(2020JJ4276) (2020JJ4276)

电气技术

1673-3800

访问量0
|
下载量0
段落导航相关论文