考虑温度与围压的HTPB固体推进剂细观结构损伤演化机制OA北大核心CSTPCD
Mesostructure damage evolution mechanism of HTPB solid propellant considering temperature and pressure
为揭示载荷环境对固体推进剂损伤机制的影响,基于孔隙率、应变等因素,利用拉伸试验、SEM、微CT等开展细观结构研究,构建了HTPB固体推进剂细观结构损伤演化物理模型,定量分析不同围压、温度及应变率下推进剂的损伤特性.结果表明,HTPB推进剂处于高围压(10 MPa)时,其最大抗拉强度与伸长率均显著增加.低温高围压(-45℃,10 MPa)环境中,围压会抑制"脱湿"损伤的发生,使得推进剂AP颗粒和基体的界面粘接更好,微裂纹更易聚合形成孔穴,进而出现颗粒破碎损伤机制.细观变形阶段,推进剂内部微裂纹的出现点早于应力-应变曲线的抗拉强度点;宏观裂纹阶段,仅有小部分孔隙的球度较高,大部分孔隙为球度较低、不规则的损伤裂纹,比例达到 75%左右,并且孔隙直径与球度之间符合幂率相关性,幂率指数为-0.246;破坏失效阶段,推进剂的损伤机制为颗粒破碎、"脱湿"损伤并伴随着基体粘连.
To investigate the influence of loading environment on the damage evolution mechanism of solid propellant,the me-sostructure of solid propellant under the different porosity and strain rates was studied by means of tensile test,SEM and micro-CT.The damage characteristics of propellants were quantitatively analyzed under different temperatures,confining pressures and strain rates.The results show that the maximum tensile strength and elongation of HTPB propellant increase significantly at high confining pressure(10 MPa).Under low temperature and high confining pressure(-45℃,10 MPa),"dewetting"damage is suppressed,which makes the interface bonding intimately between AP particles and matrix,and the microcracks are more likely to aggregate to form cavities,and then the particle breakage damage mechanism occurs.In the meso-deformation stage,cracks appear prior to reac-hing the maximum tensile strength on the stress-strain curve.In the macro-crack stage,only a small percentage of the pores exhibit high sphericity,while most of the pores are irrqular and low-sphericiyt damage crackes,accounting for approximately 75% .The re-lationship between damage pore diameter and sphericity conforms to power-law correlation,with a power-law index of-0.246.In the failure stage,the damage mechanism of propellant includes particle breakage,"dewetting"damage and matrix adhesion.
张慧慧;李海阳;申志彬
国防科技大学 空天科学学院,长沙 410073||空天任务智能规划与仿真湖南省重点实验室,长沙 410073
HTPB推进剂细观结构损伤演化机制"脱湿"损伤孔隙率
HTPB solid propellantmesostructuredamage evolution mechanismdewettingporosity
《固体火箭技术》 2024 (004)
458-467 / 10
国家自然科学基金(12372203,12302028);中国博士后科学基金(2022M723916,2023M744327).
评论