| 注册
首页|期刊导航|现代农业装备|基于改进YOLOv8的流水线面点预制菜外观检测算法研究

基于改进YOLOv8的流水线面点预制菜外观检测算法研究

杨嘉诚 黄清华 李少勇 钟卓伦 谢秋波

现代农业装备2024,Vol.45Issue(4):25-34,10.
现代农业装备2024,Vol.45Issue(4):25-34,10.

基于改进YOLOv8的流水线面点预制菜外观检测算法研究

Research on Appearance Detection Algorithm of Conveyor Line Noodle Prefabricated Dishes based on Improved YOLOv8

杨嘉诚 1黄清华 2李少勇 3钟卓伦 4谢秋波1

作者信息

  • 1. 广东省现代农业装备研究所,广东 广州 510630
  • 2. 韶关市星河生物科技有限公司,广东 韶关 512136
  • 3. 韶关市犇牛农业发展有限公司,广东 韶关 512136
  • 4. 广东工业大学,广东 广州 510006
  • 折叠

摘要

Abstract

In response to the challenges encountered in the visual quality inspection of frozen dumpling pre-processed foods,such as the difficulty for the human eye to discern minor stuffing leaks,the indistinct color characteristics of the leaks,and the similarity between normal folds and leaks leading to frequent misjudgments and omissions in manual inspections,a novel appearance quality detection algorithm for conveyor line quality inspection in the pre-processed food industry,named"CL-YOLO",based on an improved yolov8,was proposed.In the backbone stage of this algorithm,two new interconnected convolutional attention modules were introduced.These modules,while ensuring model lightness,enhanced the weight distribution and learning across various dimensions of dumpling features,thereby improving the extraction of convolutional information specific to dumpling stuffing leaks.Prior to entering the neck network,a triplet attention module further enabled the feature map to stack more effectively with the neck network,intensifying the learning of dumpling characteristics.Experimental results demonstrated that compared to YOLOv8n,CL-YOLO achieved a 0.9% increase in mAP accuracy and a 1.8% increase in recall rate in the conveyor line dumpling recognition task.Moreover,with only 2,830,839 parameters,the algorithm reached a detection speed of 159FPS,meeting the deployment requirements for edge computing.In the EUM-DET dataset,an improvement of 1.8% in mAP accuracy and 0.5% in recall rate was observed,validating the effectiveness of the proposed structure.The structure presented in this research offers a new perspective for quality inspection in food conveyor line scenarios.

关键词

流水线/面点预制菜/YOLOv8/质量监测/深度学习/注意力机制

Key words

conveyor line/noodle prefabricated dishes/YOLOv8/quality inspection/deep learning/attention mechanisms

分类

农业科技

引用本文复制引用

杨嘉诚,黄清华,李少勇,钟卓伦,谢秋波..基于改进YOLOv8的流水线面点预制菜外观检测算法研究[J].现代农业装备,2024,45(4):25-34,10.

基金项目

2022年广东省级现代农业产业园——韶关市曲江区预制菜产业园(GDSCYY2022-013) (GDSCYY2022-013)

现代农业装备

1673-2154

访问量0
|
下载量0
段落导航相关论文