| 注册
首页|期刊导航|湖南大学学报(自然科学版)|复杂稠密网络下的并置多尺度融合边缘检测模型

复杂稠密网络下的并置多尺度融合边缘检测模型

党建武 张天胤 田彬

湖南大学学报(自然科学版)2024,Vol.51Issue(8):13-22,10.
湖南大学学报(自然科学版)2024,Vol.51Issue(8):13-22,10.DOI:10.16339/j.cnki.hdxbzkb.2024274

复杂稠密网络下的并置多尺度融合边缘检测模型

Multi-scale Fusion Edge Detection Model with Spatial Co-location Rule Based on Dense Extreme Inception Network

党建武 1张天胤 2田彬1

作者信息

  • 1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
  • 2. 兰州交通大学 光电技术与智能控制教育部重点实验室,甘肃 兰州 730070
  • 折叠

摘要

Abstract

Edge detection is the basis of many computer vision tasks.Current techniques mainly rely on deep learning,but most models improve the accuracy of predicted edges using Non-Maximum Suppression in the evaluation stage.These models only focus on the accuracy of predicted edges without considering the coarseness and fineness of the edges.To address this issue,this paper proposes a new feature fusion strategy based on the dense extreme inception network.This strategy incorporates top-down multi-scale fusion edge detection with spatial co-location rule and retains the multi-network structure based on the traditional deep learning edge detection side output.The proposed strategy can better integrate the high semantic characteristic of high-layer information with the high-resolution texture characteristic of low-layer information,thereby suppressing pixel confusions in backgrounds and lines that are predicted incorrectly in edge detection.In the feature connection,Concat block is used to replace the single operation of Concat,to better fuse semantic information in different scales.Lastly,a simple attention fusion block is used to fuse outputs of multiple networks.Also,different output prediction maps at different scales are deeply supervised combining the tracing loss.This model is independent of Non-Maximum Suppression.By fully utilizing the multi-scale and multi-level information of the target image,this model improves the accuracy of prediction along with improving images'edges.The experimental results show that without the morphological Non-Maximum Suppression,on the BIPED data set,the proposed model on ODS,OIS,and AP are 0.891,0.895,0.900,respectively;with the morphological Non-Maximum Suppression,the proposed model on ODS,OIS,and AP are 0.894、0.899、0.931,respectively,which is superior to all comparison algorithms involved in this article.Also,on the MDBD data set,optimal results were also achieved.

关键词

边缘检测/卷积神经网络/注意力机制/多尺度融合

Key words

edge detection/convolutional neural network/attention mechanism/multi-scale fusion

分类

信息技术与安全科学

引用本文复制引用

党建武,张天胤,田彬..复杂稠密网络下的并置多尺度融合边缘检测模型[J].湖南大学学报(自然科学版),2024,51(8):13-22,10.

基金项目

国家自然科学基金资助项目(62067006,62367005),National Natural Science Foundation of China(62067006,62367005) (62067006,62367005)

甘肃省知识产权计划项目(21ZSCQ013),Gansu Provincial Intellectual Property Project(21ZSCQ013) (21ZSCQ013)

2022年度中央引导地方科技发展资金项目(22ZY1QA002),Central Government Guides Local Funds Project for Science and Technology Development of Gansu Province in 2022(22ZY1QA002) (22ZY1QA002)

教育部人文社会科学研究项目(21YJC880085),The Ministry of Education of Humanities and Social Science Project(21YJC880085) (21YJC880085)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文