复杂稠密网络下的并置多尺度融合边缘检测模型OA北大核心CSTPCD
Multi-scale Fusion Edge Detection Model with Spatial Co-location Rule Based on Dense Extreme Inception Network
边缘检测是计算机视觉任务的基础.目前的技术主要依赖于深度学习,但是大多数的模型在评价阶段会借助非极大值抑制来提高预测边缘的准确率.该策略仅着重关注预测边缘的准确性,没有同时考虑边缘的粗细程度.针对这一问题,本文基于复杂稠密网络,提出了一种新的特征融合策略.该策略在传统深度学习边缘检测器侧输出的基础上,添加了自顶向下的并置多尺度融合架构.此架构可以更好地将高层的高语义特征与低层的高分辨率纹理特征结合,有效地抑制了边缘预测中存在的背景模糊和伪线条的现象.在特征连接处使用Concat block块代替单一的Concat操作,更好地融合了不同尺度的语义信息.最后使用一个简单的注意力融合块融合多个网络输出,并结合跟踪损失对输出的不同尺度的预测图进行深度监督.此方法不依赖于非极大值抑制,并且充分利用了目标的多尺度、多层次信息,在精细边缘图像的同时也提升了预测的准确性.实验结果显示,在未使用和使用形态学非极大值抑制方案的情况下,所提出的模型在BIPED数据集上的ODS、OIS、AP分别达到了0.891、0.895、0.900和0.894、0.899、0.931,优于所有比较算法.在MDBD的数据集上也取得了最优的结果.
Edge detection is the basis of many computer vision tasks.Current techniques mainly rely on deep learning,but most models improve the accuracy of predicted edges using Non-Maximum Suppression in the evaluation stage.These models only focus on the accuracy of predicted edges without considering the coarseness and fineness of the edges.To address this issue,this paper proposes a new feature fusion strategy based on the dense extreme inception network.This strategy incorporates top-down multi-scale fusion edge detection with spatial co-location rule and retains the multi-network structure based on the traditional deep learning edge detection side output.The proposed strategy can better integrate the high semantic characteristic of high-layer information with the high-resolution texture characteristic of low-layer information,thereby suppressing pixel confusions in backgrounds and lines that are predicted incorrectly in edge detection.In the feature connection,Concat block is used to replace the single operation of Concat,to better fuse semantic information in different scales.Lastly,a simple attention fusion block is used to fuse outputs of multiple networks.Also,different output prediction maps at different scales are deeply supervised combining the tracing loss.This model is independent of Non-Maximum Suppression.By fully utilizing the multi-scale and multi-level information of the target image,this model improves the accuracy of prediction along with improving images'edges.The experimental results show that without the morphological Non-Maximum Suppression,on the BIPED data set,the proposed model on ODS,OIS,and AP are 0.891,0.895,0.900,respectively;with the morphological Non-Maximum Suppression,the proposed model on ODS,OIS,and AP are 0.894、0.899、0.931,respectively,which is superior to all comparison algorithms involved in this article.Also,on the MDBD data set,optimal results were also achieved.
党建武;张天胤;田彬
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070兰州交通大学 光电技术与智能控制教育部重点实验室,甘肃 兰州 730070
计算机与自动化
边缘检测卷积神经网络注意力机制多尺度融合
edge detectionconvolutional neural networkattention mechanismmulti-scale fusion
《湖南大学学报(自然科学版)》 2024 (008)
13-22 / 10
国家自然科学基金资助项目(62067006,62367005),National Natural Science Foundation of China(62067006,62367005);甘肃省知识产权计划项目(21ZSCQ013),Gansu Provincial Intellectual Property Project(21ZSCQ013);2022年度中央引导地方科技发展资金项目(22ZY1QA002),Central Government Guides Local Funds Project for Science and Technology Development of Gansu Province in 2022(22ZY1QA002);教育部人文社会科学研究项目(21YJC880085),The Ministry of Education of Humanities and Social Science Project(21YJC880085)
评论