基于滤波器剪枝的多尺度压缩感知图像重构OA北大核心CSTPCD
Multi-scale Compressed Sensing Image Reconstruction Based on Filter Pruning
为了解决低采样率下单尺度采样的压缩感知重构图像纹理细节模糊问题,同时达到使重构网络轻量化的目的,提出了一种基于滤波器剪枝的多尺度压缩感知图像重构网络.采样阶段,通过卷积来模拟图像的线性分解,融合输入图像和不同尺度的分解特征后完成多尺度采样,得到压缩感知测量值.重构阶段,设计了一种基于坐标注意力的多尺度空洞残差模块,将位置信息嵌入通道注意力中,增强网络特征学习的能力.同时通过计算特征图的熵来判断滤波器的重要性,剪除重要性较低的滤波器,达到压缩模型的目的.在DIV2K、Set5、BSDS68和Urban100等数据集上进行训练及测试.实验结果表明,所提算法在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似性(Structural Similarity,SSIM)和图像视觉效果上均有提升.其中,采样率为4%,测试集为Set14时,与CSNet+和FSOINet相比,所提算法将重构图像的PSNR分别提高了4.17 dB和2.39 dB,纹理细节更加清晰.在重构效果略微降低的前提下,得到更轻量化的模型,提升了重构速度.
To address the issue of texture detail blurring in single-scale sampled compressed sensing image reconstruction at low sampling rates and achieve a lightweight reconstruction network,this paper proposes a filter pruning based multi-scale compressed sensing image reconstruction network.In the sampling phase,the image is linearly decomposed by convolution,and then fused with the input image and different scale decomposition features to obtain the compressed sensing measurements.In the reconstruction phase,a coordinate attention based multi-scale dilated residual module is designed,which incorporates positional information into channel attention to enhance the feature learning ability of the network.Moreover,by calculating the entropy of the feature map to judge the importance of the filters,the less important filters is pruned to achieve the purpose of compressing the model.Training and testing are carried out on datasets such as DIV2K,Set5,BSDS68 and Urban100.The experimental results show that the algorithm proposed improves the Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM),and image visual effects.For instance,with a sampling rate of 4%and a test set of Set14,the proposed algorithm improves the PSNR of the reconstructed image by 4.17 dB and 2.39 dB,respectively,compared with CSNet+and FSOINet,resulting in clearer texture details.Under the premise of slightly reducing the reconstruction effect,a lighter model was obtained,which improved the reconstruction speed.
刘玉红;姜启;谈丽娟;杨恒
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
计算机与自动化
压缩感知图像重构多尺度融合坐标注意力滤波器剪枝
compressed sensingimage reconstructionmulti-scale fusioncoordinate attentionfilter pruning
《湖南大学学报(自然科学版)》 2024 (008)
34-46 / 13
国家自然科学基金资助项目(62161016,61661025),National Natural Science Foundation of China(62161016,61661025)
评论