基于QEMU的SIMD指令替换浮点指令框架OA北大核心CSTPCD
QEMU-based Framework for SIMD Instruction Replacement Floating-point Instructions
现在,几乎每个处理器架构都已经加入了对SIMD(single instruction multiple data)指令的支持,SIMD指令能同时对一组数据执行相同的操作,通过数据并行来提高处理器的处理性能.但是大部分动态二进制翻译器忽略了本地SIMD指令的利用,而是以软件语言实现来模拟浮点计算.本文提出了一种基于QEMU翻译系统的FP-QEMU框架,FP-QEMU框架采用SIMD指令来优化替换浮点计算指令,并在X86和ARM平台上完成了完整的浮点实现.该框架可以识别动态二进制翻译系统中的浮点计算优化机会并利用SIMD指令来提升系统翻译的性能.采用SPEC 2006作为测试基准,实验表明相比QEMU,FP-QEMU跨平台的ARM应用在X86计算机上运行的最高加速比可达51.5%,平均加速比达到37.42%.
Now,almost every processor architecture has added support for SIMD(single instruction multiple data)instructions.SIMD instructions can perform the same operation on a set of data simultaneously,enhancing the processing performance of the processor through data parallelism.However,most dynamic binary translators ignore the use of native SIMD instructions and instead simulate floating-point computations in software languages.This paper proposes a framework called FP-QEMU,based on QEMU translation system.FP-QEMU adopts SIMD instructions to optimize and replace floating-point calculation instructions,and completes a complete floating-point implementation on X86 and ARM benchmark platforms.The framework can identify the optimization opportunities of floating-point computation acceleration in dynamic binary translation system and use SIMD instructions to achieve the effect of improving the translation performance of dynamic binary translation system.Using SPEC 2006 as the benchmark,experiments show that compared with QEMU,FP-QEMU cross-platform ARM applications running on X86 computers can achieve a maximum speedup of 51.5%and an average speedup of 37.42%.
刘登峰;李东亚;柴志雷;周浩杰;丁海峰
江南大学 人工智能与计算机学院,江苏 无锡 214122
计算机与自动化
SIMDQEMU动态二进制翻译浮点计算
SIMDQEMUdynamic binary translationfloating-point arithmetic
《湖南大学学报(自然科学版)》 2024 (008)
70-77 / 8
国家重点研发专项计划项目(2022YFE0112400),National Key R&D Program of China(2022YFE0112400);国家自然科学基金资助项目(21706096),National Natural Science Foundation of China(21706096);江苏省自然科学基金青年项目(BK20160162),Youth Project of Natural Science Foundation of Jiangsu Province(BK20160162)
评论