|国家科技期刊平台
首页|期刊导航|航天器工程|基于多目标遗传算法的固定蜂窝板辐射器性能优化

基于多目标遗传算法的固定蜂窝板辐射器性能优化OA北大核心CSTPCD

Performance Optimization of Fixed Honeycomb Panel Radiator Based on Multi-objective Genetic Algorithm

中文摘要英文摘要

针对某低轨卫星高散热性与减重需求,提出一种蜂窝板辐射器的优化设计方案.研究表明,外贴热管能够提高辐射器散热能力与表面温度均匀性.以热管-管路布局参数作为设计变量,利用优化拉丁方试验法生成72套样本组合,并采用误差最低的径向基函数(RBF)构建代理模型,仿真结果表明,基于带精英策略的非支配排序遗传算法(NSGA-Ⅱ)迭代得到的最优方案提高散热能力超过1/4,表面温度均匀性改善65%且辐射器总质量降低32%.通过绕轨运行热控能力分析得到,优化方案的散热器具有优异的散热性能以及显著的减重优势,可为固定式空间辐射器的设计提供参考.

In response to the high heat dissipation and weight reduction for a low-orbit satellite,an optimization strategy for a honeycomb panel radiator has been proposed.The study has demon-strated that integrating external heat pipes enhances the heat dissipation capability and promotes even surface temperature uniformity of the radiator.By considering the layout parameters of heat pipes and fluid pipelines as design variables,a total of 72 sample combinations have been genera-ted using Optimal Latin Hypercube,and the Radial Basis Function(RBF)with the lowest error is employed to develop the surrogate model.The findings reveal that the iterative optimization process based on NSGA-Ⅱ results in a more than 25%enhancement in heat dissipation capacity,a 65%improvement in surface temperature uniformity,and a 32%reduction in the total mass of the radiator.The analysis of on-orbit thermal control capability indicates that the optimized radi-ator exhibits excellent heat dissipation performance and significant weight reduction advantages,which can provide reference for the design of fixed space radiators.

王建鹏;郭彤;陈亮;姜文杰;孙晓晨

中国科学院微小卫星创新研究院,上海 200050中国科学院微小卫星创新研究院,上海 200050||上海微小卫星工程中心,上海 200120

能源与动力

辐射散热器数值仿真多目标遗传算法代理模型散热优化

space radiatornumerical simulationmulti-objective genetic algorithmsurrogate modelheat dissipation optimization

《航天器工程》 2024 (004)

34-43 / 10

10.3969/j.issn.1673-8748.2024.04.005

评论