| 注册
首页|期刊导航|红外技术|FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测

FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测

刘富宽 罗素云 何佳 查超能

红外技术2024,Vol.46Issue(8):912-922,11.
红外技术2024,Vol.46Issue(8):912-922,11.

FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测

FVIT-YOLO v8:Improved YOLO v8 Small Object Detection Based on Multi-scale Fusion Attention Mechanism

刘富宽 1罗素云 1何佳 1查超能1

作者信息

  • 1. 上海工程技术大学 机械与汽车工程学院,上海 201620
  • 折叠

摘要

Abstract

This study investigates the problem of small-target detection in remote sensing and drone aerial images.These images have the characteristics of a small target scale,dense target distribution,and complex background,which makes feature extraction difficult.Most current algorithms for small-target detection ignore the impact of parameter quantity and inference speed on the practicality of the algorithm to improve accuracy.Therefore,this algorithm is impractical.To address these problems,this study proposes an improved YOLO v8 small target detection algorithm based on a lightweight multiscale fusion attention mechanism.The algorithm first adds the F operator to the FPN structure of YOLO v8,designs the weighted fusion of multiscale features,removes the P4 and P5 prediction layers in the network prediction layer,adds a P2 layer for small target prediction,improves the image input grid segmentation integration of the lightweight attention mechanism,and replaces the C2f module in the improved FPN with it,thereby improving the algorithm have better global perception ability and greatly reducing the parameter quantity.Compared to YOLO v8s,the mAP of this algorithm on the DOTA dataset increased by 4.4%,the network parameter quantity was reduced by 52%,and the FPS reached 46 frames.For the VisDrone dataset,this algorithm improved the accuracy by 8.3%.

关键词

YOLO v8/小目标检测/Transformer/轻量化实时性

Key words

YOLO v8/small target detection/Transformer/lightweight real-time

分类

计算机与自动化

引用本文复制引用

刘富宽,罗素云,何佳,查超能..FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测[J].红外技术,2024,46(8):912-922,11.

基金项目

国家自然科学基金(62101314). (62101314)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文