| 注册
首页|期刊导航|海洋测绘|融合IVMD的海表温度时空智能预测方法

融合IVMD的海表温度时空智能预测方法

韩莹 曹允重 张凌珺 赵芮晗 董昌明

海洋测绘2024,Vol.44Issue(3):53-57,61,6.
海洋测绘2024,Vol.44Issue(3):53-57,61,6.DOI:10.3969/j.issn.1671-3044.2024.03.011

融合IVMD的海表温度时空智能预测方法

SST spatio-temporal intelligent prediction method integrating IVMD

韩莹 1曹允重 2张凌珺 2赵芮晗 2董昌明3

作者信息

  • 1. 江苏省大气环境与装备技术协同创新中心,江苏 南京 210044||南京信息工程大学 自动化学院,江苏 南京 210044
  • 2. 南京信息工程大学 自动化学院,江苏 南京 210044
  • 3. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519000||南京信息工程大学 海洋科学学院,江苏 南京 210044
  • 折叠

摘要

Abstract

Accurate Sea Surface Temperature(SST)prediction is vital in marine and meteorological fields,such as marine fisheries and marine weather forecasting.A spatio-temporal hybrid model based on Improved Variational Mode Decomposition(IVMD)is proposed to predict SST.The Variational Mode Decomposition(VMD)method was improved by central frequency observation,residual index minimization and Pearson correlation coefficient to remove SST sequence redundancy.The Graph Convolutional Network(GCN)was adopted to extract SST interaction features,and Long Short-Term Memory(LSTM)was introduction to capture time dynamics.Combination of the above two model can enhance prediction accuracy.The East China Sea was selected for empirical analysis.Experimental results show that,compared with the existing model,the proposed model has significantly improved the root mean square error,mean absolute error and mean absolute percentage error.The effectiveness and stability of the proposed model are verified.

关键词

海洋表面温度预测/改进变分模态分解/皮尔逊相关系数/图卷积神经网络/长短时记忆网络

Key words

prediction of sea surface temperature/improved variational mode decomposition/pearson correlation coefficients/graph convolutional network/long short-term memory network

分类

天文与地球科学

引用本文复制引用

韩莹,曹允重,张凌珺,赵芮晗,董昌明..融合IVMD的海表温度时空智能预测方法[J].海洋测绘,2024,44(3):53-57,61,6.

基金项目

国家自然科学基金(62076136) (62076136)

南方海洋科学与工程广东省实验室(珠海)基金(SML2020SP007). (珠海)

海洋测绘

OA北大核心CSTPCD

1671-3044

访问量0
|
下载量0
段落导航相关论文