结合知识追踪和图卷积的知识概念推荐OACSTPCD
Combining Knowledge Tracing and Graph Convolution for Knowledge Concept Recommendation
科技的创新发展使得在线教育平台蓬勃发展,提供了海量的教育资源,每类教育资源中包含丰富的知识概念.目前的研究主要集中在知识图谱的个性化课程资源推荐,容易受到数据稀疏问题的影响难以进行扩展.针对难以将学习者的学习状态和学习资源进行有效匹配的问题,提出模型KT-GCN(Knowledge Tracing-Graph Convolutional Network).首先,使用知识追踪对学习者的知识水平进行整体建模,获取学习者当前的学习状态;然后,使用图卷积网络进行路径编码,获取适应于学习者的学习路径,利用TransE方法和多跳路径进行路径选择;最后,再进行预测评分获得最匹配的学习资源推荐列表.为了验证该模型的性能,在多个数据集上与基线模型进行对比实验,并进行相应的消融实验验证模型各组件的性能.
The innovative development of technology has led to the flourishing advancement of online education platforms,which provide a huge amount of educational resources,each type of which contains rich knowledge concepts.The current research mainly focuses on personalized course resource recommendation by knowledge graph,which is vulnerable to the data sparsity problem and difficult to be extended.Difficulty in matching learners'learning status with learning resources,the model KT-GCN(Knowledge Tracing-Graph Convolution Network)is proposed.Firstly,the overall modeling of learners'knowledge level is performed using knowledge tracing,getting the learner's current learning status.Then path encoding is performed using graph convolutional network,accessing to learner-adapted learning paths,path selection is performed using TransE method and multi-hop path.Finally,predictive scoring is performed to obtain a recommended list of the most matching learning resources.To vali-date the performance of the model,comparison experiments are conducted with the baseline model on multiple datasets,and cor-responding ablation experiments are performed to verify the performance of each component of the model.
王妍;丛鑫;訾玲玲
重庆师范大学计算机与信息科学学院,重庆 401331
计算机与自动化
知识追踪图卷积多跳路径知识概念
knowledge tracinggraph convolutionmulti-hop pathknowledge concept
《计算机与现代化》 2024 (008)
17-23,53 / 8
重庆市教育科学规划重点课题(K22YE205098);重庆师范大学博士启动基金/人才引进项目(21XLB030,21XLB029)
评论