| 注册
首页|期刊导航|计算机与现代化|改进YOLOv5s的落叶树鸟巢检测方法

改进YOLOv5s的落叶树鸟巢检测方法

程萌 李浩

计算机与现代化Issue(8):24-29,42,7.
计算机与现代化Issue(8):24-29,42,7.DOI:10.3969/j.issn.1006-2475.2024.08.005

改进YOLOv5s的落叶树鸟巢检测方法

Improved Deciduous Tree Nest Detection Method Based on YOLOv5s

程萌 1李浩1

作者信息

  • 1. 河海大学地球科学与工程学院,江苏 南京 211100
  • 折叠

摘要

Abstract

To address the difficulty of detecting small bird nest targets in complex backgrounds,an improved YOLOv5s network architecture named YOLOv5s-nest is proposed.YOLOv5s-nest incorporates several enhancements:a refined attention mecha-nism called Bi-CBAM is inserted into the Backbone to effectively enhance the network's perception of small targets;the SDI structure is introduced into the Neck to integrate more hierarchical feature maps and higher-level semantic information;the In-ceptionNeXt structure is inserted into the Neck to improve the model's performance and computational efficiency;and in the de-tection head,ordinary convolutions are replaced with PConv to efficiently extract spatial features and enhance detection effi-ciency.The experimental results show that the average precision of the improved model reached 89.1%,representing an increase of 6.8 percentage points compared to the original model.

关键词

落叶树/鸟巢识别/无人机影像/深度学习/目标检测

Key words

deciduous trees/nest recognition/UAV image/deep learning/object detection

分类

信息技术与安全科学

引用本文复制引用

程萌,李浩..改进YOLOv5s的落叶树鸟巢检测方法[J].计算机与现代化,2024,(8):24-29,42,7.

基金项目

国家自然科学基金资助项目(41471276) (41471276)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文