老年人跌倒检测技术研究综述OACSTPCD
Review of Fall Detection Technologies for Elderly
随着我国老龄化程度加剧,空巢独居老人所占比重明显上升,适老化设备越来越受到人们的关注.家庭环境下,由于无人看护、年龄增加以及突发疾病等一系列客观或主观原因导致的老年人跌倒已经成为威胁老年人健康的主要原因之一.因此,实时监测老年人的居家行为,对摔倒行为及时做出检测和预警,在一定程度上可以保障老人的生命安全,降低老年人由于意外跌倒所带来的生命健康风险.本文在对近几年跌倒检测方法研究进行广泛调研的基础上,根据数据获取所使用的不同类型传感器,将跌倒检测技术主要分成2类:非视觉跌倒检测方法和视觉跌倒检测方法.总结介绍了不同跌倒检测方式的系统构成,探讨了国内外最新的相关研究成果,并对其方法特点和实际应用进行了讨论.随着近几年深度学习技术的快速蓬勃发展,本文对基于深度学习的跌倒检测方法进行了重点调研,对相关算法原理及研究成果进行了深入分析与总结.此外,本文还介绍了常用的公开跌倒检测数据集,包括它们的规模和存储格式等特性,最后本文对跌倒检测技术近年来已取得的进展和未来的发展趋势分别进行总结和展望,并提出了不同方面的合理发展建议.
With the rapidly growing aging population in China,the proportion of the elderly living alone has significantly in-creased,and thus the aging-population-oriented facilities have received increased attention.In a domestic environment,the el-derly are likely to fall down due to different reasons such as lack of care,aging,and sudden illness,which have become one of the main threats to their health.Therefore,monitoring,detecting and predicting fall down behavior of the elderly in real-time can ensure their safety to some extent,while further reducing the life and health risks caused by accidental falling down.Based on a comprehensive overview of the research on human fall detection,we categorize fall detection into two categories:vision-free technologies and computer vision based methods,depending on different kinds of sensors used for data acquisition.We summa-rize and introduce the system composition of different methods and explore the latest relevant research,and discuss their method characteristics and practical applications.In particular,we focus on reviewing the deep learning based schemes which have been developing rapidly in recent years,while analyzing and discussing relevant principles and research results of deep learning based schemes in details.Next,we also introduce public benchmarking datasets for human fall detection,including dataset size and storage format.Finally,we discuss the prospect for the relevant research,and come up with reasonable suggestions in different aspects.
王梦溪;李峻
南京师范大学计算机与电子信息学院/人工智能学院,江苏 南京 210023
计算机与自动化
跌倒检测计算机视觉机器学习深度学习
fall detectioncomputer visionmachine learningdeep learning
《计算机与现代化》 2024 (008)
30-36 / 7
国家自然科学基金资助项目(62173186,61703096)
评论