| 注册
首页|期刊导航|计算机与现代化|基于多尺度特征与注意力模块的室内场景识别方法

基于多尺度特征与注意力模块的室内场景识别方法

岳有军 张远锟 赵辉 王红君

计算机与现代化Issue(8):37-42,6.
计算机与现代化Issue(8):37-42,6.DOI:10.3969/j.issn.1006-2475.2024.08.007

基于多尺度特征与注意力模块的室内场景识别方法

Indoor Scene Recognition Method Based on Multi-scale Feature and Attention Module

岳有军 1张远锟 2赵辉 1王红君1

作者信息

  • 1. 天津理工大学电气工程与自动化学院,天津 300384||天津市复杂系统控制理论及应用重点实验室,天津 300384
  • 2. 天津理工大学电气工程与自动化学院,天津 300384
  • 折叠

摘要

Abstract

Scene recognition plays an important role in the task of visual information retrieval,segmentation and image/video un-derstanding.With the development of deep learning theory,convolutional neural networks(CNN)greatly improve the ability of scene recognition by recognizing discriminative objects in images.In order to realize autonomous scene recognition for home ser-vice robots such as intelligent wheelchair beds,aiming at the condition of limited computing resources and memory requirements of mobile terminals or embedded devices,which leads to low scene recognition rate due to the single discriminative output from the network,an indoor scene recognition method based on multi-scale feature extraction and attention module is proposed.The method is based on MobileNetV2,which selects different branches from the network and extracts features at different scales.To focus on more discriminative features in the scene,the MRLA-Light attention module is added to the branches.The simulation results show that the accuracy is obviously improved,and the accuracy of tests on MIT Indoor 67 and Scene 15 scene datasets reaches 86.3%and 94.3%respectively,which is higher than the same type of networks.

关键词

室内场景识别/轻量化网络/注意力模块/特征提取

Key words

indoor scene recognition/lightweight network/attention module/feature extraction

分类

信息技术与安全科学

引用本文复制引用

岳有军,张远锟,赵辉,王红君..基于多尺度特征与注意力模块的室内场景识别方法[J].计算机与现代化,2024,(8):37-42,6.

基金项目

天津市科技支撑计划项目(19YFZCSN00360) (19YFZCSN00360)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文