面向多维时空航班数据的渐进式可视分析方法OA北大核心CSTPCD
PROGRESSIVE VISUAL ANALYSIS METHOD FOR MULTI-DIMENSIONAL SPATIO-TEMPORAL FLIGHT DATA
航班在实际运营中频繁地调整,对航空公司运营会产生不良的影响,运用可视分析方法分析历史航班的运营特征,可以发现航班计划中存在的缺陷,为航班计划调整提供支撑.该文设计面向多维时空航班数据的FlightOM-Vis系统,支持自上而下渐进式分析航班运营特征:采用多视图展示信息;融合面向数据多个维度的聚类分析方法;保留分析结果的上下文信息;提供丰富的交互工具.实验采用东方航空公司航班数据集进行验证,结果表明该系统能够协助分析人员快速挖掘隐藏在数据子集中的航班运营特征,根据可视化结果做出指导性建议.
Frequent adjustments of flights in actual operations have a negative impact on airline operations.Using visual analysis methods to analyze historical flight operation characteristics can find defects in flight plans and provide support for flight plan adjustments.For this reason,the FlightOM-Vis system for multi-dimensional spatio-temporal flight data is designed to support the progressive analysis of flight operation characteristics from top to bottom.The system used multiple views to display information,integrated clustering analysis method for multi-dimensional information of spatio-temporal flights data,retained the contextual information of the analysis results,and provided a wealth of interactive tools.The experiment used the Eastern Airlines flight data set for verification.The results show that the system can assist analysts in quickly mining the flight operation characteristics hidden in the data subset,and make guiding suggestions based on the visualization results.
贺怀清;张昱旻;刘浩翰;史崇莹
中国民航大学计算机科学与技术学院 天津 300300
计算机与自动化
多维时空数据渐进式可视分析聚类分析交互式探索
Multidimensional spatio-temporal dataProgressive visual analysisCluster analysisInteractive exploration
《计算机应用与软件》 2024 (008)
36-45,73 / 11
国家自然科学基金项目(U1333110).
评论