| 注册
首页|期刊导航|计算机应用与软件|基于注意力改进残差网络结构的表情识别方法

基于注意力改进残差网络结构的表情识别方法

张智 魏蘅

计算机应用与软件2024,Vol.41Issue(8):162-167,6.
计算机应用与软件2024,Vol.41Issue(8):162-167,6.DOI:10.3969/j.issn.1000-386x.2024.08.023

基于注意力改进残差网络结构的表情识别方法

FACIAL EXPRESSION RECOGNITION METHOD BASED ON MULTI-CHANNEL RESIDUAL NETWORK

张智 1魏蘅2

作者信息

  • 1. 武汉科技大学计算机科学与技术学院 湖北武汉 430065
  • 2. 武汉科技大学智能信息处理与实时工业系统湖北省重点实验室 湖北武汉 430065
  • 折叠

摘要

Abstract

To solve the problem of insufficient feature extraction of CNN in complex images,an improved residual network based on attention is proposed for facial expression recognition.A dual stream network was designed to detect the key points while completing the coarse feature facial expression recognition,and the attention mechanism was used to increase the weight of the features around the key points.Based on the residual network model,the jump connection between residual blocks was improved,and the ordinary convolution in residual blocks was improved to block convolution to enhance the feature extraction ability.Two facial expression recognition networks were combined for classification.The experimental results show that the model scheme has better performance.

关键词

人脸表情识别/残差网络/注意力机制/分组卷积

Key words

Facial expression recognition/Residual network/Attention mechanism/Group convolution

分类

信息技术与安全科学

引用本文复制引用

张智,魏蘅..基于注意力改进残差网络结构的表情识别方法[J].计算机应用与软件,2024,41(8):162-167,6.

基金项目

国家自然科学基金项目(61673304) (61673304)

国家社会科学基金重大计划项目(11&ZD189). (11&ZD189)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文