| 注册
首页|期刊导航|计算机应用与软件|基于贴文级特征融合的社交网络谣言检测方法

基于贴文级特征融合的社交网络谣言检测方法

余潇龙 郭天成 陈阳 王新

计算机应用与软件2024,Vol.41Issue(8):189-195,7.
计算机应用与软件2024,Vol.41Issue(8):189-195,7.DOI:10.3969/j.issn.1000-386x.2024.08.027

基于贴文级特征融合的社交网络谣言检测方法

SOCIAL NETWORKS RUMOR DETECTION APPROACH BASED ON POST-LEVEL FEATURE FUSION

余潇龙 1郭天成 1陈阳 1王新1

作者信息

  • 1. 复旦大学计算机科学技术学院 上海 201203||上海市智能信息处理重点实验室 上海 201203
  • 折叠

摘要

Abstract

The existing rumor detection methods largely neglect the correlation between post semantics,post publishers and post propagation status,which lead to low detection rates.To solve this problem,this paper proposes a rumor detection approach PF-HAN based on post-level feature fusion.The model used a Bi-LSTM with attention mechanism to generate the semantic representation of each post,and spliced it with the social network features of the corresponding post to preserve the correspondence between them.The integrated representation of the posts obtained by the fusion was input into the hierarchical attention network in the form of sequence to extract the temporal features and generate the final event representation for rumor discrimination.Experimental results over Sina Weibo and Twitter show that the Fl value of the model reaches 0.956 and 0.740 when the model performs the rumor detection task and it can complete the early rumor detection task with high accuracy.

关键词

深度学习/自然语言处理/谣言检测/特征融合

Key words

Deep learning/Natural language processing/Rumor detection/Feature fusion

分类

信息技术与安全科学

引用本文复制引用

余潇龙,郭天成,陈阳,王新..基于贴文级特征融合的社交网络谣言检测方法[J].计算机应用与软件,2024,41(8):189-195,7.

基金项目

上海市自然科学基金项目(16ZR1402200). (16ZR1402200)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量4
|
下载量0
段落导航相关论文