| 注册
首页|期刊导航|计算机应用与软件|基于scSE非局部双流ResNet网络的行为识别

基于scSE非局部双流ResNet网络的行为识别

李占利 王佳莹 靳红梅 李洪安

计算机应用与软件2024,Vol.41Issue(8):319-325,7.
计算机应用与软件2024,Vol.41Issue(8):319-325,7.DOI:10.3969/j.issn.1000-386x.2024.08.046

基于scSE非局部双流ResNet网络的行为识别

ACTION RECOGNITION ALGORITHM FOR NON-LOCAL TWO-STREAM RESNET NETWORK BASED ON SCSE FUSION

李占利 1王佳莹 1靳红梅 1李洪安1

作者信息

  • 1. 西安科技大学计算机科学与技术学院 陕西西安 710600
  • 折叠

摘要

Abstract

Aimed at the problem of low recognition rate of video frames containing redundant information in dual-stream network,scSE(Spatial and Channel Squeeze & Excitation Block)and non-local operation are introduced based on two-stream network to construct SC_NLResNet behavior recognition framework.In this framework,the framework divided the video into equal and non-overlapping temporal segments and sparsely sampled each segment,extracting RGB frames and optical flow graphs as the input of the scSE module.The features processed by scSE were inputted into the non-local two-stream ResNet network,and the segmentations were merged to obtain the final prediction results.The experimental accuracy on UCF101 and Hmdb51 dataset reaches 96.9%and 76.2%,respectively.The results show that the combination of non-local operation and scSE module can enhance the information of feature space-time and between the channels to improve the accuracy,which verifies the effectiveness of SC_NLResNet network.

关键词

双流卷积神经网络/scSE模块/残差网络/非局部操作/行为识别

Key words

Two-stream convolutional neural network/ScSE module/Residual neural network/Non-local operation/Action recognition

分类

信息技术与安全科学

引用本文复制引用

李占利,王佳莹,靳红梅,李洪安..基于scSE非局部双流ResNet网络的行为识别[J].计算机应用与软件,2024,41(8):319-325,7.

基金项目

陕西省自然科学基础研究计划项目(2019JM-348,2019JLM-10). (2019JM-348,2019JLM-10)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文