| 注册
首页|期刊导航|计算力学学报|含V型缺口分数阶黏弹性复合材料反平面界面断裂的辛方法

含V型缺口分数阶黏弹性复合材料反平面界面断裂的辛方法

徐成辉 孙义国 冷森 邓子辰

计算力学学报2024,Vol.41Issue(4):689-695,7.
计算力学学报2024,Vol.41Issue(4):689-695,7.DOI:10.7511/jslx20221222001

含V型缺口分数阶黏弹性复合材料反平面界面断裂的辛方法

A symplectic method for the anti-plane fracture analysis of an interface V-notch in fractional viscoelastic media

徐成辉 1孙义国 1冷森 1邓子辰1

作者信息

  • 1. 西北工业大学力学与土木建筑学院,西安 710129||西北工业大学复杂系统动力学与控制工信部重点实验室,西安 710129
  • 折叠

摘要

Abstract

This paper presents a symplectic method for the anti-plane fracture analysis of an interface V-notch in fractional viscoelastic composite media.The fractional Kelvin Zener model is used to describe the viscoelastic characteristics of materials.With the help of Laplace transform,the fundamental equations of an anti-plane viscoelastic fracture problem in time domain are transformed into frequency domain.By introducing the dual generalized stress variables,the Hamiltonian system is established.Then the eigenvalues and eigensolutions of the Hamiltonian dual equation are obtained by the method of separation of variables,and the unknown coefficients of the symplectic series are determined by the symplectic adjoint orthogonal relationship and the outer boundary conditions.In this way,the analytical expression of the anti-plane stress/strain intensity factor of the viscoelastic media with a V-notch is derived obtained.Finally,the intensity factor in time domain is found by inverse Laplace transform.In numerical examples,the accuracy of the presented method is verified,and the effects of fractional order parameters,notch angle and external load on the stress/strain intensity factor are revealed.

关键词

辛方法/分数阶黏弹性/界面断裂/反平面/应力强度因子

Key words

symplectic method/fractional viscoelastic media/interfacial fracture/anti-plane/stress intensity factor

分类

数理科学

引用本文复制引用

徐成辉,孙义国,冷森,邓子辰..含V型缺口分数阶黏弹性复合材料反平面界面断裂的辛方法[J].计算力学学报,2024,41(4):689-695,7.

基金项目

陕西省自然科学基础研究计划(2022JM-016) (2022JM-016)

国家自然科学基金(12072266,11702221) (12072266,11702221)

西北工业大学教育教学改革研究项目(双碳专项)(ST2023JGY02)资助. (双碳专项)

计算力学学报

OA北大核心CSTPCD

1007-4708

访问量0
|
下载量0
段落导航相关论文