首页|期刊导航|四川轻化工大学学报(自然科学版)|基于SE-ResNet和迁移学习的轴承故障诊断方法研究

基于SE-ResNet和迁移学习的轴承故障诊断方法研究OA

Research on Bearing Fault Diagnosis Method Based on SE-ResNet and Transfer Learning

中文摘要英文摘要

针对传统滚动轴承故障诊断在小样本下准确率低和泛化性差的问题,提出了一种基于SE-ResNet和迁移学习的轴承故障诊断方法.首先,对数据进行预处理,将其转化为二维图像;其次,在残差神经网络的残差块中引入挤压与激励网络结构的注意力机制,从而改进深度残差网络模型;然后,将转化后的二维图像输入SE-ResNet模型,并对测试样本中的滚动轴承状态进行分类;最后,通过迁移学习将小样本训练的模型作为预训练模型,利用不同工况下的数据进行实验,并将该方法与2D-CNN、ResNeXt-50、AlexNet和BiLSTM方法进行比较.结果表明,SE-ResNet在CWRU数据集单工况下的准确率达到87.09%~99.61%,SE-ResNet+迁移学习的方法在本文两种数据集(CWRU、XJTU-SY)的各工况下的准确率分别达到92.8%~99.54%和85.1%~100%,比其他方法具有更好的准确率和泛化性能.

In response to the problem of low accuracy and poor generalization in traditional rolling bearing fault diagnosis under small sample conditions,a bearing fault diagnosis method based on SE-ResNet and transfer learning is proposed in this paper.Firstly,the data is preprocessed and transformed into two-dimensional images.Secondly,the attention mechanism of the Squeeze and Excitation network structure is introduced into the residual blocks of the neural network to improve the deep residual network model.Then,the transformed images are fed into the SE-ResNet model for classification of the rolling bearing states in the test samples.Finally,by using transfer learning to utilize a model trained on small samples as a pre-trained model,experiments are conducted with data from different working conditions.This approach is compared to 2D-CNN,ResNeXt-50,AlexNet,and BiLSTMmethods.The results demonstrate that the accuracy of SE-ResNet under single working conditions in CWRU datasets ranges from 87.09%to 99.61%,while the accuracy of the SE-ResNet+transfer learning method ranges from 92.8%to 99.54%and 85.1%to 100%under the working conditions of the two datasets(CWRU、XJTU-SY)in this paper,respectively.These results indicate that the SE-ResNet+transfer learning method exhibits superior accuracy and generalization performance compared to other methods.

唐宇峰;杨泽林;胡光忠;曹睿;何俚秋

四川轻化工大学机械工程学院,四川 宜宾 644000||企业信息化与物联网测控技术四川省高校重点实验室,四川 宜宾 644005四川轻化工大学机械工程学院,四川 宜宾 644000四川轻化工大学机械工程学院,四川 宜宾 644000四川轻化工大学机械工程学院,四川 宜宾 644000四川轻化工大学机械工程学院,四川 宜宾 644000

计算机与自动化

小样本故障诊断SENetResNet迁移学习

small samplefault diagnosisSENetResNettransfer learning

《四川轻化工大学学报(自然科学版)》 2024 (4)

19-27,9

四川省科技厅科技支撑项目(2022NSFSC1154)企业信息化与物联网测控技术四川省高校重点实验室开放基金项目(2023WYJ04)四川轻化工大学科研创新团队计划项目(SUSE652A004)

10.11863/j.suse.2024.04.03

评论