首页|期刊导航|四川轻化工大学学报(自然科学版)|基于文本特征融合的双流生成对抗修复网络

基于文本特征融合的双流生成对抗修复网络OA

Dual-stream Generative Adversarial Repair Network Based on Text Feature Fusion

中文摘要英文摘要

为解决深度学习技术存在特征挖掘不充分、语义表达不完整等问题,消除修复图像存在伪影或模糊纹理等现象,本文构建了上下文特征融合的双流生成对抗修复网络,以实现重建、感知与风格损失的补偿,从而使修复后的图像实现全局一致性.该网络采用融入注意力机制的U-Net作为主干网络,充分提取图像结构和纹理特征.采用上下文本特征融合网络充分挖掘图像高级语义及特征信息的上下文关系,实现空洞区域的结构及纹理特征的填充与精细修复.采用结构与纹理双流鉴别器来估计纹理和结构的特征并统计信息来区分真实图像和生成图像.采用基于语义的联合损失函数以增强修复图像在语义上的真实性.将本文算法与对比算法中表现最好的CTSDG算法在CelebA和Places2数据集上进行对比,其中PSNR与SSIM值在CelebA上分别提升2.74 dB和5.80%,FID下降4.02;PSNR与SSIM值在Place2上分别提升4.15 dB和3.33%,FID下降2.33.因此,改进的图像修复方法的客观评价指标更优,能够更加有效地修复破损图像的结构和纹理信息,使得图像修复的性能更佳.

In order to solve the problems of insufficient feature mining and incomplete semantic expression in deep learning technology,and to eliminate the phenomenon of artifacts or fuzzy texture in repaired images,a dual-stream generative adversarial restoration network with context feature fusion is constructed in the present paper,which is used to realize reconstruction,perception and style loss compensation,so as to achieve global consistency of repaired images.Integrated with the attention mechanism,the U-Net is used as the backbone network to fully extract the image structure and texture features in this network.The upper and lower text feature fusion network is used to fully excavate the high-level semantic and contextual relationship of the feature information,to realize the filling and fine restoration of the structure and texture features of the empty region.The structure and texture dual-stream discriminator is used to estimate the features of texture and structure and distinguish the real image from the generated image.A semantic-based joint loss function is used to enhance the semantic authenticity of repaired images.The CTSDG algorithm with the best performance among the comparison algorithms is compared based on CelebA and Places2 datasets.The values of PSNR and SSIM on CelebA are increased by 2.74 dB and 5.80%respectively,while the value of FID is decreased by 4.02.Similarly,the values of PSNR and SSIM on Place2 increases by 4.15 dB and 3.33%respectively,while the value of FID decreases of 2.33.Therefore,the improved image restoration method shows better objective evaluation indexes,which can repair the structure and texture information of damaged images more effectively,and makes the performance of image restoration better.

刘婷婷;陈明举;李兰

四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||人工智能四川省重点实验室,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||人工智能四川省重点实验室,四川 宜宾 644000四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||人工智能四川省重点实验室,四川 宜宾 644000

计算机与自动化

注意力机制双流结构生成对抗网络双流鉴别器联合损失函数

attention mechanismsdual-stream structuresgenerative adversarial networksdual-stream discriminatorjoint loss function

《四川轻化工大学学报(自然科学版)》 2024 (4)

36-46,11

四川省科技成果转移转化示范项目(2022ZHCG0035)海南省Internet信息检索重点实验室开放基金项目(2022KY03)四川省机器人与智能系统国际联合研究中心开放研究课题(JQZN2022-005)四川轻化工大学研究生创新基金项目(Y2022130)

10.11863/j.suse.2024.04.05

评论