基于CEEMD-CNN-GRU的风电功率预测OA
Wind Power Prediction Based on CEEMD-CNN-GRU
传统风电功率预测中预测模型难以充分提取风电场历史数据中的时空特性和隐藏特征,预测精度较低.针对此问题,提出一种基于CEEMD-CNN-GRU的风电功率预测模型.首先对不同的风电场景使用互补集合经验模态分解(CEEMD)对功率序列进行分解,降低风电功率序列的波动性;然后采用卷积神经网络(CNN)提取空间特征,采用门控循环单元(GRU)提取时间特征;最后完成风电功率预测,并将各个分解序列预测结果叠加得到最终预测结果.结果表明,设计的模型精度高,相比于CNN、GRU、CNN-GRU模型,均方根误差分别降低80.17%、77.07%和71.07%,风机分组且场景划分后相比于未进行风机分组和未进行场景划分,均方根误差分别降低78.63%和66.61%.
The traditional prediction model in wind power prediction is difficult to fully extract the spatio-temporal characteristics and hidden features in the wind farm historical data,and the prediction accuracy is low.Aiming at this problem,a CEEMD-CNN-GRU wind power prediction model has been proposed.Firstly,the power sequences are decomposed using complementary ensemble empirical modal decomposition(CEEMD)for different wind power scenarios to reduce the volatility of the wind power sequences.Then,the spatial features are extracted using the convolutional neural network(CNN),and the temporal features are extracted using the gated recurrent unit(GRU).Lastly,the wind power prediction is achieved,and the decomposed sequences are superposed to obtain the final prediction results.The results show that the designed model is highly accurate,and the root mean square error is reduced by 80.17%,77.07%and 71.07%compared to the CNN,GRU and CNN-GRU models,respectively.Moreover,the root mean square error is reduced by 78.63%and 66.61%after turbines are grouped and scenarios are divided compared with those without turbines grouping or scenarios dividing,respectively.
赵敏;王孟军;刁海岸;黄凯峰
淮南师范学院机械与电气工程学院,安徽 淮南 232038淮南师范学院机械与电气工程学院,安徽 淮南 232038安徽理工大学电气与信息工程学院,安徽 淮南 232038淮南师范学院机械与电气工程学院,安徽 淮南 232038||深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
动力与电气工程
短期风电功率预测互补集合经验模态分解卷积神经网络门控循环单元
short-term wind power predictioncomplementary ensemble empirical mode decompositionconvolutional neural networksgated recurrent unit
《四川轻化工大学学报(自然科学版)》 2024 (4)
68-74,7
国家重点实验室开放基金项目(SKLMRDPC21KF23)安徽省高校优秀青年人才支持计划项目(gxyq2022068)校级重点教育教学改革研究项目(2023hsjyxm24)
评论