| 注册
首页|期刊导航|山东科学|基于优化神经网络的沥青混合料力学特性预估

基于优化神经网络的沥青混合料力学特性预估

王晓阳 万晨光 王笑风

山东科学2024,Vol.37Issue(4):56-64,9.
山东科学2024,Vol.37Issue(4):56-64,9.DOI:10.3976/j.issn.1002-4026.20230149

基于优化神经网络的沥青混合料力学特性预估

Prediction of mechanical properties of asphalt mixtures based on optimized neural networks

王晓阳 1万晨光 1王笑风1

作者信息

  • 1. 河南省交通规划设计研究院股份有限公司,河南 郑州 450000
  • 折叠

摘要

Abstract

The existing fatigue life prediction of asphalt mixtures is mostly based on traditional fatigue equation fitting;however,due to the multidirectionality of pavement structure and the complexity of materials,the prediction accuracy is often not satisfactory.Therefore,this article establishes an optimized neural network-based model for predicting the strength and fatigue life of asphalt mixtures using indoor indirect tensile tests and verifies the accuracy of the prediction model.The experimental results show that the accuracy of Genetic Algorithm-Back Propagation neural network to predict the fatigue mechanical properties for asphalt mixture is within 4%,which is far superior to traditional fatigue prediction equations and can be used as an effective method to obtain data on the fatigue characteristics of asphalt mixtures.

关键词

交通工程/沥青混合料/深度学习模型/强度预测/疲劳寿命预测

Key words

traffic engineering/asphalt mixture/deep-learning model/strength prediction/fatigue life prediction

分类

交通运输

引用本文复制引用

王晓阳,万晨光,王笑风..基于优化神经网络的沥青混合料力学特性预估[J].山东科学,2024,37(4):56-64,9.

基金项目

河南省交通运输厅科技项目(2020J-2-5) (2020J-2-5)

山东科学

OACSTPCD

1002-4026

访问量0
|
下载量0
段落导航相关论文