| 注册
首页|期刊导航|上海航天(中英文)|基于机器学习模型FY-3D MWRI海面风速反演

基于机器学习模型FY-3D MWRI海面风速反演

张云 韩天辉 孟婉婷 杨树瑚 周绍辉 韩彦岭

上海航天(中英文)2024,Vol.41Issue(4):120-132,172,14.
上海航天(中英文)2024,Vol.41Issue(4):120-132,172,14.DOI:10.19328/j.cnki.2096-8655.2024.04.015

基于机器学习模型FY-3D MWRI海面风速反演

Sea Surface Wind Speed Retrieval Based on Machine Learning models with FY-3D MWRI

张云 1韩天辉 1孟婉婷 2杨树瑚 1周绍辉 3韩彦岭1

作者信息

  • 1. 上海海洋大学 信息学院,上海 201306||上海市海洋智能信息与导航遥感工程技术研究中心,上海 201306
  • 2. 上海航天电子技术研究所,上海 201109
  • 3. 上海航天空间技术有限公司,上海 201109
  • 折叠

摘要

Abstract

The L1-level bright temperature data of the microwave radiation imager(MWRI)in the Fengyun-3D(FY-3D)satellite can be used to retrieve the global sea surface wind speed.This paper discussed the use of multiple linear statistical regression model and machine learning models to retrieve the sea surface wind speed in clear sky and cloud areas.Four-day test sets are put into multiple linear statistical regression model,Random Forest(RF)model,Support Vector Regression(SVR)model,Convolutional Neural Network(CNN)model,and the Stacking Fusion(SF)model for the sea surface wind speed retrieval in the clear sky area,and the obtained optimal root mean square errors(RMSEs)are 1.56,1.31,1.24,1.29,and 1.27 m/s,respectively.Meanwhile,two-day test sets are put into multiple linear statistical regression model,RF model,SVR model,CNN model,and SF model for the sea surface wind speed retrieval in the cloud area and the obtained optimal RMSEs are 2.12,1.98,1.87,1.89 and 1.89 m/s,respectively.To further verify the reliability of the sea surface wind speed retrieval in the clear sky area,the buoy wind speed measured by the National Data Buoy Center(NDBC)in the United States is selected.The results show that the RMSE of the wind speed retrieved by the CNN model and the wind speed measured by the NDBC is 0.74 m/s,and the coefficient of determination(R-square,R2)is 0.80;the RMSE of the wind speed retrieved by the SF model and the wind speed measured by the NDBC is 0.85 m/s,and the R2 is 0.74.These results confirm that the machine learning models can effectively complete the brightness temperature retrieval tasks for global sea surface wind speed with the FY-3D MWRI.

关键词

风云三号D星(FY-3D)/微波成像仪(MWRI)/海面风速反演/机器学习/Stacking融合(SF)模型

Key words

Feng Yun-3D(FY-3D)/microwave radiation imager(MWRI)/sea surface wind speed retrieval/machine learning/Stacking fusion(SF)model

分类

信息技术与安全科学

引用本文复制引用

张云,韩天辉,孟婉婷,杨树瑚,周绍辉,韩彦岭..基于机器学习模型FY-3D MWRI海面风速反演[J].上海航天(中英文),2024,41(4):120-132,172,14.

基金项目

国家自然科学基金资助项目(42271335,42176175) (42271335,42176175)

国家重点研发计划资助项目(2019YFD0900805) (2019YFD0900805)

上海航天(中英文)

OACSTPCD

2096-8655

访问量0
|
下载量0
段落导航相关论文