| 注册
首页|期刊导航|现代电力|计及源荷双侧弹性资源的区域电网鲁棒优化调度

计及源荷双侧弹性资源的区域电网鲁棒优化调度

梁硕哲 唐昊 王正风 程文娟 梁肖

现代电力2024,Vol.41Issue(4):601-611,11.
现代电力2024,Vol.41Issue(4):601-611,11.DOI:10.19725/j.cnki.1007-2322.2022.0307

计及源荷双侧弹性资源的区域电网鲁棒优化调度

Robust Optimal Dispatch of Regional Power Grid Considering Flexible Resources on Both Source and Load Sides

梁硕哲 1唐昊 1王正风 2程文娟 3梁肖2

作者信息

  • 1. 合肥工业大学电气与自动化工程学院,安徽省合肥市 230009
  • 2. 国网安徽省电力有限公司,安徽省合肥市 230061
  • 3. 合肥工业大学计算机与信息学院,安徽省合肥市 230601
  • 折叠

摘要

Abstract

In view of the increasing trend of renewable energy generation and flexible resources in the power grid,a robust op-timization method for day-ahead dispatching considering the flexible resources of both source and load sides is proposed to cope with the challenges brought by the uncertainty of renew-able energy generation to the dispatching operation of the power grid.Firstly,according to the response characteristics of reducible loads and shiftable loads,the influence of compensa-tion price on the maximum reduction capacity of the former and the acceptable translation period of the latter is analyzed,and the flexible resources model of load side is established.Secondly,considering the uncertainty of wind power output,based on the model of deep peak regulation and flexible re-sources on load side,a robust optimization model for day-ahead dispatching is established,in which the compensation price and adjustment quantity of flexible loads are jointly optimized.Fi-nally,the effectiveness of the proposed model and method is verified by an example analysis.The results show that the dis-patching method considering the schedulable potential of flex-ible resources of both source and load sides can effectively im-prove the robustness and economy of power grid operation.

关键词

可削减负荷/可平移负荷/深度调峰/弹性资源模型/鲁棒优化

Key words

reducible loads/shiftable loads/deep peak shaving/model of flexible resources/robust optimization

分类

信息技术与安全科学

引用本文复制引用

梁硕哲,唐昊,王正风,程文娟,梁肖..计及源荷双侧弹性资源的区域电网鲁棒优化调度[J].现代电力,2024,41(4):601-611,11.

基金项目

国家电网有限公司总部科技项目"弹性环境下基于深度学习的智能调度技术研究"资助(SGTYHT/19-JS-215).Project Supported by State Gird Corporation of China Project"Intelligent Scheduling Technology Based on Deep Learning in Flexible Environment"(SGTYHT/19-JS-215). (SGTYHT/19-JS-215)

现代电力

OA北大核心CSTPCD

1007-2322

访问量0
|
下载量0
段落导航相关论文