|国家科技期刊平台
首页|期刊导航|现代情报|融合跨平台用户偏好与异质信息网络的推荐算法研究

融合跨平台用户偏好与异质信息网络的推荐算法研究OA北大核心CHSSCDCSSCICSTPCD

Research on Recommendation Algorithm Integrating Cross-Platform User Preferences and Heterogeneous Information Networks

中文摘要英文摘要

[目的/意义]本文基于跨平台用户的异构大数据,提出一种融合跨平台用户偏好与异质信息网络的推荐算法(CPHAR),对于缓解个性化推荐的稀疏性和冷启动问题具有重要意义.[方法/过程]首先,根据跨平台用户信息构建核心兴趣朋友圈,使用卷积神经网络和自注意力机制捕捉用户在源平台和目标平台中的信息偏好特征;其次,根据核心兴趣网络以及推荐项目之间的关系构建异质信息网络,使用异质图注意力网络模型进行特征聚合;最后,将以上特征嵌入改进后的矩阵分解模型,计算推荐得分.[结果/结论]模型在自主构建的 4个跨平台数据集中均表现出优越的性能,本文不仅弥补了推荐领域中跨平台多属性和细粒度数据集的空缺,而且通过引入跨平台特征进一步完善了推荐系统相关的理论与方法体系.

[Purpose/Significance]This paper proposes a recommendation algorithm that integrates cross-platform us-er preferences and heterogeneous information networks,based on the heterogeneous big data of cross-platform users.It plays a significant role in alleviating the sparsity and cold start problems of personalized recommendation.[Method/Process]Initially,the paper constructed a user core interest social circle based on cross-platform heterogeneous informa-tion,captured user information preference features in both the source and target platforms through convolutional neural net-works and self-attention mechanisms.Subsequently,it built a heterogeneous information network based on the core interest network and the relationships among recommended items,and it employed a heterogeneous graph attention network model for feature aggregation.Finally,the study integrated the above feature embeddings into an improved matrix factorization model to compute recommendation scores.[Results/Conclusion]The model demonstrates superior performance across four independently constructed cross-platform datasets.This study not only fills the gap in cross-platform,multi-attribute,and fine-grained datasets in the field of recommendation but also enhances the theoretical and methodological system related to recommendation by introducing cross-platform features.

张雪;毕达天;陈功坤;杜小民

吉林大学商学与管理学院,吉林 长春 130012海南大学国际商学院,海南 海口 570228

推荐算法跨平台异质信息网络用户偏好深度学习

recommendation algorithmcross-platformheterogeneous information networksuser preferencesdeep learning

《现代情报》 2024 (009)

31-41 / 11

国家社会科学基金项目"基于用户跨社交媒体的信息行为偏好特征挖掘与推荐研究"(项目编号:21BTQ059).

10.3969/j.issn.1008-0821.2024.09.003

评论